Heart Rate Variability in College Football Players throughout Preseason Camp in the Heat

Here’s a quick look at our latest study examining cardiac-autonomic responses to preseason camp in the heat among college football players. The free full text can be accessed here: Heart rate variability in college football players throughout preseason camp in the heat IJSM

Intensive training periods tend to increase RHR and decrease HRV, reflecting stress and fatigue. However, adaptations to heat exposure (e.g., plasma volume expansion) tend to have the opposite effects. So we wanted to see what happens when players were exposed to both intense training and intense heat stress during preseason camp.

Despite increases in perceived fatigue throughout the 2-week period, RHR and HRV reflected responses consistent with heat acclimation.

HRV initially decreased in linemen, then peaked after a day of rest. Non-linemen faired a little better with smaller decrements in perceived fatigue and more frequent day-to-day improvements in RHR and HRV.

These results indicate that heart rate parameters and perceived fatigue are independent markers of training status, and that desirable cardiovascular adaptations can occur in the presence of soreness and fatigue.

This is especially important for tech companies who try to infer recovery status from HRV alone. As HRV improved throughout camp, an app’s algorithm would report to coaches that players are well-recovered. Given that no player feels well-recovered during preseason camp in the heat, the technology suddenly loses credibility for being wrong and will likely be dismissed.

This is unfortunate because the heart rate parameters are likely reflecting important adaptations that may indicate better tolerance to training in the heat, a reduced exercising heart rate, and improved fitness. Thus, I encourage users to ignore “recovery” scores and interpret the data in appropriate context.

ABSTRACT 

We aimed to characterize cardiac-autonomic responses to a 13-day preseason camp in the heat among an American college football team. Players were categorized as linemen (n=10) and non-linemen (n=18). RHR, natural logarithm of the root-mean square of successive differences multiplied by twenty (LnRMSSD), and subjective wellbeing (LnWellness) were acquired daily. Effect sizes±90% confidence interval showed that for linemen, LnRMSSD decreased (moderate) on day 2 (71.2±10.4) and increased (moderate) on day 12 (87.1±11.2) relative to day 1 (77.9±11.2) while RHR decreased (small–moderate) on days 6, 7, and 12 (67.7±9.3–70.4±5.5 b∙min-1) relative to day 1 (77.1±10.1 b∙min-1). For non-linemen, LnRMSSD increased (small–large) on days 3–5, 7, 12, and 13 (83.4±6.8–87.6±8.5) relative to day 1 (80.0±6.5) while RHR decreased (small–large) on days 3–9, 12, and 13 (62.1±5.2–67.9±8.1 b∙min-1) relative to day 1 (70.8±6.2 b∙min-1). Decrements in LnWellness were observed on days 4–10 and 13 for linemen (moderate) and on days 6–9, 12, and 13 for non-linemen (small–moderate). Despite reductions in LnWellness, cardiac-autonomic parameters demonstrated responses consistent with heat-acclimation, which possibly attenuated fatigue-related decrements.

Effects of varying training load on HRV and running performance among an Olympic rugby sevens team

This study is the first of a few collaborations between Dan Howells and I involving HRV in elite rugby sevens players. Here we evaluated HRV and running performance responses  to peak training loads during preparation for the 2016 Olympic games. A practical summary follows the abstract below.

Effects of varying training load on HRV and running performance among an Olympic rugby sevens team

JSAMS Abstract Flatt Howells HRV rugby sevens

How do elite seven’s players respond to substantial increments in training load? Based on previous studies, we’d expect the weekly LnRMSSD mean (LnRMSSDm) to decrease and the coefficient of variation (LnRMSSDcv) to increase relative to baseline. We’ve observed this in collegiate soccer players and sprint-swimmers.

In contrast to this hypothesis, the players showed no change in LnRMSSDmean throughout two weeks of intensified training relative to a baseline week of low loads. LnRMSSDcv demonstrated a small increase during the first week of increased load (expected response) but then showed a moderate decrease during the second week of increased load, which involved greater loads than the previous week (unexpected response).

No change (or an increase) in LnRMSSDm and a reduction in LnRMSSDcv is typically observed when training loads are reduced. Less training stress results in less fluctuations in LnRMSSD. However, these players demonstrated less fluctuation in LnRMSSD despite significant increments in training load.

The discrepancy here appears to be related to how players are tolerating and adapting to the training load. We often assume that increased loads will result in fatigue accumulation and temporary negative responses. However, these elite players demonstrated no reductions in subjective indicators of recovery status during the weeks of increased load. Additionally, there was no significant decrement in running performance (maximum aerobic speed) mid-way through the intensified microcycles.

Thus, the preservation of autonomic activity (no change in LnRMSSDm) and less fluctuations (reduced LnRMSSDcv) seem to reflect a postive coping response to the training. In fact, individuals who demonstrated the lowest LnRMSSDcv during week 1 of increased load showed the most favorable changes in running performance (r = -0.74).

This is yet another study that demonstrates that reduced fluctuations in LnRMSSD (i.e., decrease in LnRMSSDcv) is associated with positive training responses in athletes.

The Practical Implications of the study were:

•When evaluated as a group, LnRMSSDcv may be a more sensitive training response marker than LnRMSSDm during training load variations among elite players.

•LnRMSSDcv did not display a linear dose–response relationship with training load. Rather, LnRMSSDcv seems to reflect an adaptive physiological response to the imposed training stimulus which may be useful for identifying individuals responding undesirably to training.

•Elite rugby players presenting large day-to-day fluctuations in LnRMSSD in response to training load variation should be monitored closely for performance decrements, particularly when nearing important competitions.

 

 

 

 

Trend Changes versus Daily Changes

HRV fluctuates to a certain extent on a daily basis. I’ve seen athletes with coefficient of variations (CV, a marker of deviation from the weekly mean) as low as 2% to >15%. An athlete’s CV changes over time, which itself serves as what I believe to be, an important indication of training adaptation.  The CV is related to individual fitness level and training stress and possibly even performance potential. Measurement position will also affect the CV with lower CV’s observed in the supine position compared to standing.

Here’s an important lesson I’ve learned about interpreting HRV in athletes. A daily change in HRV can occur for a number of reasons, and may or may not have any meaningful impact on acute performance or “readiness”. Putting too much focus on an acute change in HRV without stepping back and observing the overall trend is a bit myopic. This isn’t to say that daily changes aren’t useful, just that a full appreciation of the training process, including the evolution of the trend in response to training will enable better analysis and therefore decision-making. This is because longitudinal changes in an athlete’s HRV trend do not occur for no reason. Increases, decreases, greater fluctuation, less fluctuation, when assessed over time, are all very meaningful.

Observe the screenshot below which details the last 6 months of a high level collegiate sprint-swimmers trend. The data pretty much interprets itself when you compare the changes in the trend to changes in training and life events.

6motrend

What can we observe from this?

  • Greater fluctuation and a decreasing trend during heavy training stress
  • Less fluctuation and an increasing trend during reduced training stress
  • Greater fluctuation and a decreasing trend during normal training with increased academic stress (preparing for and writing exams). Thanks to recent work from Bryan Mann, we know that this increase in non-training related stress may put athletes at greater risk of injury or illness.

I strongly believe that to use HRV effectively, you need to consider the changes in the trend, and not just the day to day stuff. When asked what HRV products are worthwhile or what do I think of App X or product Z, I always suggest that they invest in one that provides the best visualization of the data over time and includes other markers of training status (i.e., load, wellness, etc.). This enables more meaningful interpretation of the data and can therefore be more insightful and useful when determining the appropriate action to take with regards to training program adjustment.

Early changes in HRV relate to eventual fitness changes in collegiate soccer players

Numerous studies have shown that increases in fitness (e.g., VO2max, MAS, Yo-Yo, etc.) are associated with increased cardiac-parasympathetic activity among healthy, athletic and clinical populations. This is one of the reasons why aerobic exercise is considered to be cardio-protective, due to enhanced resting vagal-modulation.

However, there is considerable inter-individual variation in how a given individual responds to an exercise program. Following a standardized endurance training program, some individuals will show significant improvements in aerobic fitness while others will show only small improvements. Some may even regress. Why this occurs is likely due to a variety of potential variables including genetic factors, appropriateness of training stimulus and life style factors (i.e., sufficient recovery, sleep quality, nutrition, stress, etc.). Given the association between fitness changes and HRV changes, monitoring HRV throughout training may be useful in evaluating individual adaptation to a training program.

In our latest study (in press with JSCR), we wanted to determine if changes in HRV mid-way through a training program related to eventual changes in intermittent running performance in a collegiate female soccer team. It would be useful for coaches to be able to identify athletes who may not be coping well with training earlier on rather than waiting until post-testing to realize some athletes didn’t improve much. Coaches can then investigate the potential cause (i.e., fatigue, insufficient sleep, etc.) and intervene accordingly with modifications to training load or life style factors to get athletes back on track.

Before and after a 5-week conditioning program, we tested the team’s intermittent running capacity with the Yo-Yo IRT1. The conditioning program was designed based on the individuals max aerobic speed (MAS) adapted from Dan Baker’s MAS guide (link). Below is a screen shot of the conditioning program (unofficial).

MAS prog. Flatt

During week 1 and week 3, the athletes recorded their resting HRV each morning after waking with their smartphone using the ithlete HRV application which we validated previously (link). The weekly mean and weekly coefficient of variation (CV) for HRV and HR values were calculated. Change variables from week 1 to week 3 of HRV and HR (mean and CV) were correlated with the changes in Yo-Yo IRT1 performance from week 0 to week 5.

We found a very large correlation between the change in HRV CV at week 3 and Yo-Yo IRT1 changes at week 5 (r = -0.74). A large correlation was also found between the change in HRV mean and Yo-Yo IRT1 (r = 0.50). The HR measures showed only moderate correlations with the eventual changes in fitness.

Based on these results, it appears that monitoring HRV throughout training may be useful for evaluating how individual athletes are adapting to training. Specifically, we’re looking for two possible trend changes:

  1. A decrease in day-to-day fluctuation in HRV scores (i.e., decreased HRV CV)
  2. An increase in the weekly mean

Athletes demonstrating the opposite (increased CV and/or decreased weekly mean) may require a little closer attention from coaching personnel  to ensure that the training load is appropriate or that the athlete’s are taking care of the non-training factors that can be effecting their recovery.

Another novel finding of this study was that ultra-short HRV recordings (~1 min) derived from a smartphone app used by the athletes provided meaningful training status information. This indicates that HRV monitoring can be much more affordable and convenient than traditional approaches (i.e., longer recording periods with more expensive HRV tools).

I have plans for a much more elaborate post in the near future on the HRV CV. I’ll cover previous research, post some data and discuss how to interpret changes in the CV with appropriate context.

Link to current study: Evaluating individual training adaptation with Smartphone-derived heart rate variability in a collegiate female soccer team.

HRV and Adaptation: Insights from a hockey player

One of the first things I learned from using ithlete was that my HRV trend reflected my progressive adaptation to exercise. After my first conditioning session in two years I saw an immense drop in my HRV. Each session thereafter resulted in smaller fluctuations in my HRV score until eventually my trend was virtually unchanged from it. In the screenshot below you can see that in early October of 2012, I experienced a huge drop in HRV with a red indication. That was the morning after my first conditioning session (stair intervals). These workouts were performed each Wednesday thereafter with a progressive increase in sets and duration however you’ll see that HRV isn’t nearly as effected as it initially was. The next major drop in my HRV occurred in late November but wasn’t the result of a conditioning session.

HRV Chart

I also learned that HRV reflects illness, as well as the time it takes to fully recover from it. In the screen shot below you can see when I get sick and how long it took for my HRV to return to baseline levels (discussed in much more depth here).

073112_1517_Illnessreco3.png

Based on the sRPE levels, you can see that moderate workouts were causing large drops in HRV; a clear indication that my body was still fighting the infection even though I was symptom free.  I was able to adjust my training accordingly and not push it too hard until my body was ready to handle it.

See also a case study by Botek et al (2012) who used HRV to guide an elite athlete back to competition after having infectious mononucleosis.

HRV has also been shown to reflect acclimatization to heat (Dranitsin, 2008; Epstein et al. 2010).

Hockey Player

About 8 weeks ago I posted the HRV trend of a hockey player that I’m working with. Below in his screen shot you can see that the first two weeks of workouts were very taxing. However, we only had a short period of time to train and therefore waiting for optimal recovery wasn’t an option.

A.E.Trend

Keeping tabs on HRV, subjective measures of fatigue and performance markers I would make small changes in his training. For example I would maintain intensity but reduce volume when his HRV was low and he felt fatigued. I’ve found volume to affect HRV much more than intensity.

At this point his HRV baseline has improved 8 points and his HRV is not nearly as affected after intense training sessions. He’s put on about 10lbs of lean body mass and has increased both strength and fitness considerably; clear indications of positive adaptation. I’ve found that with this particular athlete HRV is generally in line with his perceived levels of fatigue. For example, he’ll report some soreness but that he feels great and highly motivated to train. This will typically corresponds with a good HRV score. However, on days where he reports feeling fatigued, unmotivated etc, HRV is almost always below baseline. Sleep duration and quality will also correlate with his HRV and perceived fatigue.

AETrendFeb

In each of the above examples, HRV has been a valuable tool in reflecting adaptation. Acute changes (daily change) in HRV are valuable in that they reflect a transient response to a significant stressor (response to a workout, high emotional stress, awful sleep, extreme deviation in nutrition, etc.). Monitoring the weekly and monthly trends provides insight as to how training and global stress is being tolerated over time (cycle to cycle). At no point did this athletes strength performance drop during our training. Even on days with low HRV he was able to hit or match a PR in strength exercises. However, strength levels weren’t too high to begin with so I wouldn’t read too much into that.

I’ve had some compliance issues with this athlete and taking daily measurements so getting him to fill in the comments section or use the training load function was out of the question. Therefore that data is not posted.

In closing, taken with subjective measures of fatigue, performance and global stress, HRV can potentially reveal meaningful information about adaptation and training response.

References

Botek, M. et al. (2012) Return to play after health complications associated with infection mononucleosis guided on ANS activity in elite athlete: a case  study. Gymnica, 42(2)

Dranitsin, O. (2008) The effect on heart rate variability of acclimatization to a humid, hot environment after a transition across five time zones in elite junior rowers. European Journal of Sport Science, 8(5): 251-258 Abstract

Epstein, Y. et al. (2010) Acclimation to heat interpreted from the analysis of heart rate variability by the Multipole Method. Journal of Basic & Clinical Physiology Pharmacology, 21(4): 315-23 Abstract