Effects of Long-Haul Travel and the Olympic Games on Heart-Rate Variability in Rugby Sevens Medalists

If success leaves clues, then there was something to learn from what Dan Howells & staff did to prepare GB 7s for the 2016 Olympics where they advanced to the gold medal final with an undefeated record.

After sorting through the data (HRV, wellness, training load) and having several video and email conversations with Dan, we decided to share the story of their Olympic expedition.

Prior to analyzing the data or obtaining specific details from Dan, I anticipated substantial decrements in status markers in response to a full day in transit (travel fatigue/jet lag, etc.), pre-tournament (arousal/anxiety), & throughout the tournament (match fatigue, sleep loss).

However, data showed minimal effects of travel (decrements mostly in non-starters), no evidence of pre-competitive anxiety (values improved pre-match), & intra-tournament decrements (small in magnitude) comparable to a previous domestic tournament.

Essentially, the data suggest that the team travelled across multiple time zones, adjusted to a foreign environment, and competed successfully on the worlds biggest stage with hardly any indication of stress or fatigue. Incredible!

Although we can’t say for sure that the strategies employed by staff can explain the findings (no control group, unfortunately), we felt that the details were worth sharing.

The paper discusses various proactive and reactive interventions that were used to support training adaptation, manage travel and competition related stress/fatigue, and aid recovery in players.

I’m very grateful to Dan and staff for the collaboration and for being open with these details. There is tremendous vulnerability in giving everyone access to how you do things. Thank you, Dan. You shared tremendous insights that many coaches and players can benefit from.

Here is the full text:

Cardiac-Autonomic and Hemodynamic Responses to a Hypertonic, Sugar-Sweetened Sports Beverage in Physically Active Men

Short summary of and full-text access to a new study from our lab.

Link to Full Text:

Context: we previously resorted to standardized HRV measures performed in the athletic training room with college football players to overcome non-compliance with post-waking tests.

Problem: pre-training hydration practices confound HRV measures. Players typically opt for cold bottles of water or Gatorade. Thus, we needed to determine how much and for how long these drinks impacted HRV.


Findings: Gatorade had small effects that lasted about 45 min. Effects of water were larger and persisted for 60 min.

Key points:

If measuring HRV in a lab/clinic/training facility, be mindful of recent fluid ingestion.
HRV measures obtained within 60 min of 591 ml water or 45 min of an equal volume of Gatorade will be capturing their physiology effects and result in falsely elevated values. This would result in misinterpretation of autonomic status.

Heart rate-based indices to detect parasympathetic hyperactivity in functionally overreached athletes. A meta-analysis

Our new meta-analysis determined that parasympathetic hyperactivity in overreached endurance athletes is best detected using weekly averaged versus isolated HRV values and in the standing versus supine position.

Thanks to Agustín Manresa-Rocamora, Antonio Casanova-Lizón, Juan A. Ballester-Ferrer, José M. Sarabia, Francisco J. Vera-Garcia, and Manuel Moya-Ramón for inviting my collaboration.

The full text can be accessed at the link below:

https://onlinelibrary.wiley.com/share/author/WRPUS2WUBDYBTUBBUGQK?target=10.1111/sms.13932

Ultrashort Versus Criterion Heart Rate Variability Among International-Level Girls’ Field Hockey Players

Here’s our latest study comparing 1 min vs 5 min HRV throughout a 4-week camp in international-level girls field hockey players. Values were highly correlated, showed similar responses to load, & similar associations with fitness. Practically same insight, 80% less time. Thanks to Drs. Gonzalez-Fimbres and Hernandez-Cruz for the collaboration.

Link to full free text below:

Image
Image

Heart Rate Variability in College Football Players throughout Preseason Camp in the Heat

Here’s a quick look at our latest study examining cardiac-autonomic responses to preseason camp in the heat among college football players. The free full text can be accessed here: Heart rate variability in college football players throughout preseason camp in the heat IJSM

Intensive training periods tend to increase RHR and decrease HRV, reflecting stress and fatigue. However, adaptations to heat exposure (e.g., plasma volume expansion) tend to have the opposite effects. So we wanted to see what happens when players were exposed to both intense training and intense heat stress during preseason camp.

Despite increases in perceived fatigue throughout the 2-week period, RHR and HRV reflected responses consistent with heat acclimation.

HRV initially decreased in linemen, then peaked after a day of rest. Non-linemen faired a little better with smaller decrements in perceived fatigue and more frequent day-to-day improvements in RHR and HRV.

These results indicate that heart rate parameters and perceived fatigue are independent markers of training status, and that desirable cardiovascular adaptations can occur in the presence of soreness and fatigue.

This is especially important for tech companies who try to infer recovery status from HRV alone. As HRV improved throughout camp, an app’s algorithm would report to coaches that players are well-recovered. Given that no player feels well-recovered during preseason camp in the heat, the technology suddenly loses credibility for being wrong and will likely be dismissed.

This is unfortunate because the heart rate parameters are likely reflecting important adaptations that may indicate better tolerance to training in the heat, a reduced exercising heart rate, and improved fitness. Thus, I encourage users to ignore “recovery” scores and interpret the data in appropriate context.

ABSTRACT 

We aimed to characterize cardiac-autonomic responses to a 13-day preseason camp in the heat among an American college football team. Players were categorized as linemen (n=10) and non-linemen (n=18). RHR, natural logarithm of the root-mean square of successive differences multiplied by twenty (LnRMSSD), and subjective wellbeing (LnWellness) were acquired daily. Effect sizes±90% confidence interval showed that for linemen, LnRMSSD decreased (moderate) on day 2 (71.2±10.4) and increased (moderate) on day 12 (87.1±11.2) relative to day 1 (77.9±11.2) while RHR decreased (small–moderate) on days 6, 7, and 12 (67.7±9.3–70.4±5.5 b∙min-1) relative to day 1 (77.1±10.1 b∙min-1). For non-linemen, LnRMSSD increased (small–large) on days 3–5, 7, 12, and 13 (83.4±6.8–87.6±8.5) relative to day 1 (80.0±6.5) while RHR decreased (small–large) on days 3–9, 12, and 13 (62.1±5.2–67.9±8.1 b∙min-1) relative to day 1 (70.8±6.2 b∙min-1). Decrements in LnWellness were observed on days 4–10 and 13 for linemen (moderate) and on days 6–9, 12, and 13 for non-linemen (small–moderate). Despite reductions in LnWellness, cardiac-autonomic parameters demonstrated responses consistent with heat-acclimation, which possibly attenuated fatigue-related decrements.

New study: Association between Subjective Indicators of Recovery Status and Heart Rate Variability among Divison-1 Sprint-Swimmers

Our latest study investigates the relationship between subjective indicators of recovery status and HRV among NCAA Division 1 sprint-swimmers. The main findings were:

1) Perceived sleep quality showed the strongest relationship with post-waking LnRMSSD.

2) LnRMSSD demonstrated stronger associations with subjective parameters than resting heart rate.

We report both group and individual relationships. The full text is available here.

Association between Subjective Indicators of Recovery Status and Heart Rate Variability among Divison-1 Sprint-Swimmers

Abstract

Heart rate variability (HRV) is a physiological marker of training adaptation among athletes. However, HRV interpretation is challenging when assessed in isolation due to its sensitivity to various training and non-training-related factors. The purpose of this study was to determine the association between athlete-self report measures of recovery (ASRM) and HRV throughout a preparatory training period. Ultra-short natural logarithm of the root mean square of successive differences (LnRMSSD) and subjective ratings of sleep quality, fatigue, muscle soreness, stress and mood were acquired daily for 4 weeks among Division-1 sprint-swimmers (n = 17 males). ASRM were converted to z-scores and classified as average (z-score −0.5–0.5), better than average (z-score > 0.5) or worse than average (z-score < −0.5). Linear mixed models were used to evaluate differences in LnRMSSD based on ASRM classifications. LnRMSSD was higher (p < 0.05) when perceived sleep quality, fatigue, stress and mood were better than average versus worse than average. Within-subject correlations revealed that 15 of 17 subjects demonstrated at least one relationship (p < 0.05) between LnRMSSD and ASRM variables. Changes in HRV may be the result of non-training related factors and thus practitioners are encouraged to include subjective measures to facilitate targeted interventions to support training adaptations.

Figure 1 Effect Size SPORTS jpeg

Figure 1

Effect sizes ± 90% confidence interval for resting heart rate parameters relative to subjective categorization.

Revisiting 60-s HRV recordings vs. Criterion in athletes

I’ve recently had the pleasure of peer-reviewing a few very well-written and carried out studies investigating duration requirements for stabilization preceding HRV recordings by different research groups. I look forward to seeing the published versions as the quality of the papers was very high.

In reviewing these papers it prompted me to reconsider what we all have been using as the criterion period. My colleagues and I have published 5 papers using a 5-min R-R sample preceded by a 5-min ‘stabilization’ period (10 min total duration) as the criterion (as has other groups), which is in line with traditional procedures. But I think we failed to address an important limitation of these procedures…

The issue is that the ‘traditional procedures’ were not devised for the purposes of establishing LnRMSSD specifically (rather, they needed to accommodate spectral analysis), nor were they devised for reflecting fatigue and adaptation to training programs. Therefore, for these specific purposes, it can be argued that the traditional procedures may not be as relevant, or at the very least, calls into question whether the 5-10 min period following the 0-5 min stabilization is in fact a criterion within this context.

Some things to consider:

  • 10 min is a long time to lay or sit still, especially for athletes who struggle to go 30-sec without checking their iPhone (I don’t think anyone disputes this). Are they more relaxed and stable in this situation or are they growing impatient and restless?
  • Are ANS responses and adaptation to training best measured in a completely relaxed state, or perhaps in response to a mild stimulus such as orthostasis (sitting or standing) (previous thoughts on this here)?
  • Should we be as skeptical with the ‘criterion’ recordings as much as as we are with 60-s recordings? How do we know if one is better than the other in the context of monitoring athletes? There’s now numerous studies by different groups showing the usefulness of 60-s measures for reflecting training responses, associating with fitness, etc.
  • Perhaps the question shouldn’t be regarding the optimal duration of the recording but rather, what is the shortest, most convenient procedure possible that still provides meaningful training status information? I don’t think an athlete or coach cares if their 60 sec HRV isn’t the same as the criterion if it’s still providing useful information.
  • I’m doubtful we would have completed any longitudinal training studies where HRV recordings were >60 sec on a near-daily basis. In my experience, >60 sec measures are not feasible with teams. Therefore, it’s ~60 s or we don’t bother.
  • Should future research instead try to determine what are the best ways to perform a ~60 sec HRV measure to limit noise from confounding factors? How can we improve the validity and reliability of 60-sec measures? How long from food/fluid ingestion should we wait? Can we obtain this with PPG rather than HR straps? What is the best position to measure in? etc.

To be clear, I still think that research evaluating stabilization requirements and comparing to the ‘criterion’ is absolutely meaningful and an important starting point. This was not intended to be critical, but rather to open discussion on future research directions.

 

 

The effect of training status on HRV in D-1 collegiate swimmers

When implementing HRV monitoring with a new team, the coach will be quick to point out the inter-individual variability in the athletes’ trends. Some athletes are showing high scores and some are low. Some are showing considerable daily fluctuation while others show very consistent numbers. Or, some show substantial fluctuation during this period but minimal fluctuation during that period. This can be confusing and difficult to interpret, but with some context, the trends (and changes therein) can usually be explained.

Greater fitness levels are associated with higher resting HRV and faster parasympathetic reactivation following exercise. This likely contributes to the smaller coefficient of variation  (CV) we (and others) have observed in athletes with higher VO2max and intermittent running performance. So if we were to categorize athletes of the same sport based on competitive level (i.e., training status), we should see group differences between their average lnRMSSD and CV. What makes our approach different from previous work is the longer observation period (1 month), the use of a finger sensor (PPG) and smartphone application using ultra-short HRV recordings for daily data acquisition and inclusion of the CV in the analysis. This was presented at the NSCA National Conference in New Orleans this July. Full manuscript in production soon.

THE EFFECT OF TRAINING STATUS ON HEART RATE VARIABILITY IN DIVISION-1 COLLEGIATE SWIMMERS

Andrew A. Flatt, Bjoern Hornikel, Michael R. Esco

University of Alabama, Tuscaloosa, AL

Resting heart rate variability (HRV) fluctuates on a daily basis in response to physical and psychological stressors and may provide useful information pertaining to fatigue and adaptation. However, there is limited research comparing HRV profiles between athletes of the same sport who differ by training status. PURPOSE: The purpose of this study was to compare resting heart rate (RHR) parameters between national and conference level Division-1 Collegiate swimmers and to determine if any differences were related to psychometric indices. METHODS: Twenty-four subjects were categorized as national (NAT, n = 12, 4 female) or conference level competitors (CONF, n=12, 5 female). Over 4 weeks, daily HRV was measured in the seated position by the subjects after waking and elimination with a validated smartphone application and pulse-wave finger sensor (app)  utilizing a 55-second recording period. Subjects then completed a questionnaire on the app where they rated perceived levels of sleep quality, muscle soreness, mood, stress and fatigue on a 9-point scale. The HR parameters evaluated by the app include RHR and the log-transformed root-mean square of successive RR interval differences multiplied by 20 (lnRMSSD). The 4-week mean for RHR (RHRm) and lnRMSSD (lnRMSSDm) in addition to the coefficient of variation (CV) for RHR (RHRcv) and lnRMSSD (lnRMSSDcv) were determined for comparison. In addition, psychometric parameters were also averaged between groups and compared. Independent t-tests and effect sizes ± 90% confidence limits (ES± 90% CL) were used to compare the HR and psychometric parameters. RESULTS: NAT was moderately taller (184.9 ± 10.0 vs. 175.5 ± 12.5 cm; p = 0.06, ES ± 90% CL = 0.83 ± 0.70) and heavier (80.4 ± 9.7 vs. 75.2 ± 11.9 kg; p = 0.26, ES ± 90% CL = 0.48 ± 0.67) than CONF, though not statistically significant. The results comparing HR and psychometrics are displayed in Table 1. lnRMSSDm and lnRMSSDcv was moderately higher and lower, respectively, in NAT compared to CONF (p<0.05). CONCLUSION: Higher training status is associated with moderately higher lnRMSSDm and lower lnRMSSDcv compared to those of lower training status. This was observed despite no significant difference in perceived stressors that may affect HR parameters. PRACTICAL APPLICATION: Training status appears to be a determinant of daily HRV and its fluctuation. This may be because higher level athletes are more fit and recover faster from training, resulting in a more stable HRV pattern. This information can be useful to practitioners when interpreting HRV trends in athletes. For example, an increase in HRV with reduced daily fluctuation may indicate improvements in an athletes training status. Alternatively, an athlete with high training status demonstrating reduced HRV and greater daily fluctuation may be showing signs of fatigue or loss of fitness depending on the context of the current training phase and program.

table swim HRV comarison

This figure shows a year of data from two athletes (Olympic level on top vs. Conference level on bottom) to provide a nice visual representation of their trend differences. HRV trend swim comparison

New Study: Intra- and inter-day reliability of ultra-short-term HRV in elite rugby union players

Here’s a look at our latest study in collaboration with Fabio Nakamura and colleagues, now in press with JSCR (Abstract below). In this study, HRV was recorded as a team at the training facility, not immediately after waking. This is the approach that many coaches are interested in using given the issue with compliance when trying to get athletes to perform HRV measures on their own at home after waking. Controlled and supervised measures at the facility appear promising, at least in these high level athletes.

It’s important to understand that autonomic activity is constantly making adjustments to physical, chemical and perceived psychological stimuli. Thus, HRV is inherently not the most reliable metric. However, training status/fitness appear to have a strong affect on day to day variation in HRV. More fit athletes recover faster/tolerate training better and thus tend to show less deviation from baseline compared to less fit athletes, of which will experience much greater homeostatic disruption from training and greater day to day variation. I strongly believe that the amount of daily fluctuation (i.e., lnRMSSDcv) is a very useful indication of fitness, stress and training adaptation.

We currently have a paper in production looking at the effect of training status on HRV. In the mean time, compare the trends below of an Olympic level and a conference level athlete, both short-distance swimmers (similar age and physical characteristics) across 4 consecutive weeks of training.

lnrmssd compareIntra- and inter-day reliability of ultra-short-term heart rate variability in rugby union players.

The aim of this study was to examine the intra-day and inter-day reliability of ultra-short-term vagal-related heart rate variability (HRV) in elite rugby union players. Forty players from the Brazilian National Rugby Team volunteered to participate in this study. The natural log of the root mean square of successive RR interval differences (lnRMSSD) assessments were performed on four different days. HRV was assessed twice (intra-day reliability) on the first day and once per day on the following three days (inter-day reliability). The RR interval recordings were obtained from 2-min recordings using a portable heart rate monitor. The relative reliability of intra- and inter-day lnRMSSD measures were analyzed using the intraclass correlation coefficient (ICC). The typical error of measurement (absolute reliability) of intra- and inter-day lnRMSSD assessments were analyzed using the coefficient of variation (CV). Both intra-day (ICC = 0.96; CV = 3.99%) and inter-day (ICC = 0.90; CV = 7.65%) measures were highly reliable. The ultra-short-term lnRMSSD is a consistent measure for evaluating elite rugby union players, in both intra- and inter-day settings. This study provides further validity to using this shortened method in practical field conditions with highly trained team sports athletes.

Full text on Research Gate

New Study: Monitoring weekly HRV in futsal players during the preseason

Here’s a quick look at our latest collaboration with Dr. Fabio Nakamura and colleagues, published in J Sport Sci: Sci Med Football. This paper nicely demonstrates the inter-individual variation in HRV responses to training in team sports. An interesting finding was the large negative relationship between the weekly mean of lnRMSSD and the weekly CV of lnRMSSD. Essentially, the athletes with higher HRV tended to show smaller daily fluctuations in HRV and vice versa. This is likely an effect of higher fitness, which we (and others) have touched on in previous studies.
ABSTRACT

This study aimed to compare the weekly natural log of the root-mean-square difference of successive normal inter-beat (RR) intervals (ln RMSSDWeekly) and its coefficient of variation (ln RMSSDCV) in response to 5 weeks of preseason training in professional male futsal players. A secondary aim was to assess the relationship between ln RMSSDWeekly and ln RMSSDCV. The ln RMSSD is a measure of cardiac–vagal activity, and ln RMSSDCV represents the perturbations of cardiac autonomic homeostasis, which may be useful for assessing how athletes are coping with training. Ten futsal players had their resting ln RMSSD recorded prior to the first daily training session on four out of approximately five regular training days·week−1. Session rating of perceived exertion (sRPE) was quantified for all training sessions. Despite weekly sRPE varying between 3455 ± 300 and 5243 ± 463 arbitrary units (a.u.), the group changes in ln RMSSDWeekly were rated as unclear (using magnitude-based inference), although large inter-individual variability in ln RMSSD responses was observed. The ln RMSSDCV in weeks 4 and 5 were likely lower than the previous weeks. A large and significant negative correlation (r = −0.53; CI 90%: −0.36; −0.67) was found between ln RMSSD and ln RMSSDCV. Therefore, monitoring individual ln RMSSD responses is suggested since large inter-individual variations may exist in response to futsal training. In addition, higher values of ln RMSSD are associated with lower oscillations of cardiac autonomic activity.

HRV futsal Fig 1

Full Text on Research Gate