New HRV Research Vol: 2

Here are 5 new studies pertaining to HRV and training.

Previous Edition: Vol: 1       

1.

Sartor, F. et al. (2013) Heart rate variability reflects training load and psychophysiological status in young elite gymnasts. Journal of Strength & Conditioning Research, Published ahead of print. 

Abstract

In gymnastics monitoring of the training load and assessment of the psychophysiological status of elite athletes is important for training planning and to avoid overtraining, consequently reducing the risk of injures. The aim of this study was to examine whether heart rate variability (HRV) is a valuable tool to determine training load and psychophysiological status in young elite gymnasts. Six young male elite gymnasts took part in a 10 week observational study. During this period, beat to beat heart rate intervals were measured every training day in week 1, 3, 5, 7 and 9. Balance, agility, upper limb maximal strength, lower limb explosive and elastic power were monitored during weeks 2, 4, 6, 8 and 10. Training load of each training session of all 10 weeks was assessed by session-RPE and psychophysiological status by Foster’s index. Morning supine HRV (HF% and LF%/ HF%) correlated with the training load of the previous day (r=0.232, r=-0.279, p<0.05 ). Morning supine to sitting HRV difference (mean RR, mean HR, HF%, SD1) correlated with session-RPE of the previous day (r=-0.320, r=0.301 p<0.01, r=0.265, r=-0.270, p<0.05) but not with Foster’s index. Training day/reference day HRV difference (mean RR, SD1) showed the best correlations with session-RPE of the previous day (r=-0.384, r=-0.332, p<0.01) and Foster’s index (r=-0.227, r=-0.260, p<0.05). In conclusion, HRV, and in particular training day/reference day mean RR difference or SD1 difference, could be useful in monitoring training load and psychophysiological status in young male elite gymnasts.

2.

Boutcher, S.H. et al. (2013) The relationship between cardiac autonomic function and maximal oxygen uptake response to high-intensity intermittent exercise training. Journal of Sports Sciences, Published ahead of print.

Abstract

Major individual differences in the maximal oxygen uptake response to aerobic training have been documented. Vagal influence on the heart has been shown to contribute to changes in aerobic fitness. Whether vagal influence on the heart also predicts maximal oxygen uptake response to interval-sprinting training, however, is undetermined. Thus, the relationship between baseline vagal activity and the maximal oxygen uptake response to interval-sprinting training was examined. Exercisers (n = 16) exercised three times a week for 12 weeks, whereas controls did no exercise (n = 16). Interval-sprinting consisted of 20 min of intermittent sprinting on a cycle ergometer (8 s sprint, 12 s recovery). Maximal oxygen uptake was assessed using open-circuit spirometry. Vagal influence was assessed through frequency analysis of heart rate variability. Participants were aged 22 ± 4.5 years and had a body mass of 72.7 ± 18.9 kg, a body mass index of 26.9 ± 3.9 kg · m−2, and a maximal oxygen uptake of 28 ± 7.4 ml · kg−1 · min−1. Overall increase in maximal oxygen uptake after the training programme, despite being anaerobic in nature, was 19 ± 1.2%. Change in maximal oxygen uptake was correlated with initial baseline heart rate variability high-frequency power in normalised units (r = 0.58; P < 0.05). Thus, cardiac vagal modulation of heart rate was associated with the aerobic training response after 12 weeks of high-intensity intermittent-exercise. The mechanisms underlying the relationship between the aerobic training response and resting heart rate variability need to be established before practical implications can be identified.

 

3.      

James, DVC. Et al (2012) Heart Rate Variability: Effect of Exercise Intensity of Post-Exercise Response.  Research Quarterly for Exercise & Sport. 83(4)

Abstract:

The purpose of the present study was to investigate the influence of two exercise intensities (moderate and severe) on heart rate variability (HRV) response in 16 runners 1 hr prior to (-1 hr) and at +1 hr, +24 hr, +48 hr, and +72 hr following each exercise session. Time domain indexes and a high frequency component showed a significant decrease (p < .001) between -1 hr and +1 hr for severe intensity. The low frequency component in normalized units significantly increased (p < .01) for severe intensity at +1 hr. Only severe exercise elicited a change in HRV outcomes postexercise, resulting in a reduction in the parasympathetic influence on the heart at +1 hr; however, values returned to baseline levels by +24 hr.

 

4.

Gravitis, U. et al (2012) Correlation of basketball players physical condition and competition activity indicators. Lase Journal of Sports Science, 3(2): 39-46

Abstract

We failed to find any research about whether physical condition affects the indicators of a basketball player’s competition activity, and if yes, then to what extent; whether there is direct correlation between the indicators of a basketball player’s physical condition and his shooting accuracy in a game, as well as the number of obtained and lost balls by him.

Aim of the research: to investigate correlation of basketball players’ indicators of physical condition and competition activity.

Male basketball players aged 21-25 years participated in the research. On the pre-game day all basketball players were tested. Players’ heart rate was interpreted with the scientific device Omega M. A computer gave conclusion about a player’s degree of tension, as well as the degree of adaptation to physical loads, the readiness of the body energy provision system, the degree of the body training and the psycho-emotional condition, as well asthe total integral level of sports condition at the given moment. On the next day of the competition calendar game the content analysis of the competition technical recording was made to compare the player’s whose physical indicators were lower performance with his average performance in the whole tournament. Altogether 80 cases have been analysed when a player having lower physical condition indicators participated in a game.

All in all the players having lower indicators of physical condition in 80% of cases competition activity results were lower than their average performance in the tournament. The Pearson’s rank correlation coefficient also shows a close connection between the indicators of physical condition and competition activity (r=0.687; p<0.01), in comparison to a player’s average performance during the whole tournament. Basketball players’ indicators of physical condition have close correlation (r=0.687; p<0.01) with the indicators of competition activity.The results of physical condition test obtained with the help of the device Omega M can be used to anticipate basketball players’ performance of their competition activity.

 

5.

Chalencon S, Busso T, Lacour J-R, Garet M, Pichot V, et al. (2012) A Model for the Training Effects in Swimming Demonstrates a Strong Relationship between Parasympathetic Activity, Performance and Index of Fatigue.  PLoS ONE 7(12): e52636. doi:10.1371/journal.pone.0052636

Abstract

Competitive swimming as a physical activity results in changes to the activity level of the autonomic nervous system (ANS). However, the precise relationship between ANS activity, fatigue and sports performance remains contentious. To address this problem and build a model to support a consistent relationship, data were gathered from national and regional swimmers during two 30 consecutive-week training periods. Nocturnal ANS activity was measured weekly and quantified through wavelet transform analysis of the recorded heart rate variability. Performance was then measured through a subsequent morning 400 meters freestyle time-trial. A model was proposed where indices of fatigue were computed using Banister’s two antagonistic component model of fatigue and adaptation applied to both the ANS activity and the performance. This demonstrated that a logarithmic relationship existed between performance and ANS activity for each subject. There was a high degree of model fit between the measured and calculated performance (R2 = 0.84±0.14,p<0.01) and the measured and calculated High Frequency (HF) power of the ANS activity (R2 = 0.79±0.07, p<0.01). During the taper periods, improvements in measured performance and measured HF were strongly related. In the model, variations in performance were related to significant reductions in the level of ‘Negative Influences’ rather than increases in ‘Positive Influences’. Furthermore, the delay needed to return to the initial performance level was highly correlated to the delay required to return to the initial HF power level (p<0.01). The delay required to reach peak performance was highly correlated to the delay required to reach the maximal level of HF power (p = 0.02). Building the ANS/performance identity of a subject, including the time to peak HF, may help predict the maximal performance that could be obtained at a given time.

HRV and Strength Research: Implications for Strength/Power Athletes?

At this point there is quite a bit of research pertaining to HRV and aerobic exercise/endurance training. However, the application of HRV for strength/power (S/P) athletes is less clear. Today I will discuss the available research pertaining to resistance training (RT) and HRV and share some of my thoughts on the topic.

Unfortunately for S/P athletes, the majority of the research that exists involving RT and HRV do not involve athletes. Rather, most of the research tests the effects that RT has on resting HRV for the purposes of improving health/reducing mortality in elderly or diseased populations. Nevertheless, I will summarize what I’ve read.

Heffernan and colleagues (2007) found no change in HRV following 6 weeks of RT and after 4 weeks of detraining in 25 year old male untrained subjects (n=14).

Cooke and Carter (2005) saw non-significant increases in HRV following 8 weeks of RT compared to control in healthy young adults (n=22).

In middle aged folks with pre-hypertension, aerobic exercise increased HRV while RT resulted in decreases in HRV (Collier et al. 2009). In healthy young adults aerobic training improved HRV (in men but not women) while RT had no effect (Sloan et al. 2009).

Elite endurance athletes had higher HRV at rest compared to Elite power athletes but the power athletes had better resting HRV than control (Kaltsatou et al. 2011). No surprise here.

Following 16 weeks of resistance training, a high intensity group and a low intensity group of healthy older women both improved strength with no significant changes in HRV (Forte et al. 2003). These results were consistent with findings by Madden et al (2006) with the same population however they included an aerobic training group who did see increases in HRV.

RT improved HRV in women with fibromyalgia in a study by Figueroa et al. (2007) but failed to improve HRV in the same population in work by Kingsley et al. (2010).

Compared to 3 months of low intensity training (calisthenics and breathing training), intense training (combined aerobic and strength training) improved HRV at rest and in response to orthostasis (standing) in COPD patients (Camillo et al. 2011). The researchers found that better baseline HRV, muscle force and daily levels of activity were predictors of HRV changes after exercise intervention.

In healthy older men, 12 weeks of eccentric RT resulted in decreased HRV. (Melo et al. 2008)

If one’s goal is to increase HRV via exercise then I would definitely go with aerobic work as this seems to be more effective than RT, though the results are conflicting. Training protocols, subjects, health status, age, HRV measurement position and duration, etc. all vary quite a bit which likely accounts for the conflicting results. I assume that there is a volume/intensity threshold that must be met during RT periods to cause a change in resting HRV. For optimal health it is likely that a combination of aerobic work and RT will offer the most benefits.

From personal experience, I see much higher scores when I incorporate more aerobic or intermittent conditioning work. In reviewing my all time HRV trend, I can clearly see that over the spring and summer (03-09) of 2012 I had considerably more green scores and higher deflections. This is in line with the time that the weather got nicer and I started doing 30-40 minute runs 3-4x/week (March was unusually warm last year). I got really sick for 2 weeks in June as I discussed here, otherwise I would expect  my trend to be even higher. Once Sept. rolled around I started working full-time again and reduced my aerobic work to 2x/week for about 2o minutes and at a lower intensity at which point baseline declines back to pre-spring/summer levels.

trendalltimejan28

Implications for S/P Athletes

The application of HRV for S/P athletes is obviously different than for elderly or diseased populations. RT is incorporated in training as a means to increase performance, not to increase vagal tone. Therefore, the utility of HRV for this population revolves around its potential ability to:

(Any research I discuss in this section has been cited previously and will not be cited again today, see my older posts for references.)

  • Predict training outcomes

–       Higher HRV at baseline results in improvements in aerobic performance (see here). Would higher baseline HRV result in better S/P improvements? If so, would purposeful manipulation of ANS prior to intensive RT periods via “aerobic” (read “work capacity”) training be of benefit? We already know the importance of GPP but is this relationship mirrored in HRV? If so, HRV may be worth monitoring during these periods.

–       Better basketball and ice hockey performance as well as endurance performance has been correlated with HRV (specifically parasympathetic tone) as I’ve discussed in previous posts. I’m not sure this relationship exists with S/P athletes but it would still be worth testing. Anecdotally, I’ve experience reduced strength performance when HRV is low due to physical fatigue. However, I haven’t really seen strength affected when HRV is low caused by other factors (sleep, other stressors, etc.) Therefore, establishing this relationship must involve careful consideration of these variables.

  • Reflect Recovery Status/Training Load, Overreaching/Non-Functional Overreaching

–       Does overreaching in S/P athletes result in a concomitant decrease in performance and HRV?  Elite female wrestlers were considered non-functionally overreached when performance decreased and HRV was significantly above or below baseline for greater than 2 weeks. Elite tennis players saw significant decreases in HRV but improved performance. Generally in endurance athletes, overreaching will result in decreased performance and a significant increase or decrease in HRV (from baseline).

–       I feel that in S/P athletes, performance probably won’t decrease concurrently with HRV assuming it is a gradual decline as a result progressively increasing training loads. Rather, HRV will probably change first indicating an accumulation of fatigue and performance will fall at some point after if loading persists. Monitoring HRV may be useful to prevent excessive fatigue/overreaching if that isn’t the goal. Perhaps it is also useful in detecting transitions from functional to non-functional overreaching (the point at which HRV changes from overly sympathetic to highly parasympathetic).

–       Does the return to baseline HRV (after overreaching) happen concurrently with return or increase in S/P performance? This was the for case elite swimmers as peak performance occurred concurrently with peak HF values (parasympathetic tone). If so HRV would be a good tool for guiding tapers and establishing best protocols for meet/competition preparation.

–       HRV is an effective tool for guiding aerobic training. Does this apply to S/P athletes? Given that HRV reflects recovery status in S/P athletes (both in the research and anecdotally) and that HRV is sensitive to pretty much all forms of stress, it would seem logical to at least consider HRV in determining daily training. HRV may serve as a guide for determining training frequency and intensity/volume based on individual recovery. More on this topic here. It would be interesting to see HRV guided vs. Pre-planned RT compared in S/P athletes.

  • Guide Periodization

–       HRV will decrease in response to an intense workout. When you perform that workout again and again, your body adapts. The workout is no longer as stressful (decrease in soreness, lack of HRV response, quick recovery, etc. What benefits can HRV offer for adjusting volumes, intensities, exercise selections, frequencies etc. in effort to continually stimulate progress? Is HRV response after a workout any indication of how effective that workout is? Of course there are other factors to consider, not just the amount of stress/fatigue a workout causes. I have repeated workouts with high perceived exertion that have had little effect on HRV. Does that indicate that a change is needed in programming?

It goes without saying that several other factors and variables should be considered when analyzing HRV. HRV is only one variable and is sensitive to a variety of factors that  can influence a result (non-training related stressors, pre-competition anxiety, etc.).

Announcement

This March I will be relocating to Alabama to work in the Human Performance Lab at Auburn University (Montgomery campus) with Dr. Mike Esco. I met Dr. Esco at the NSCA National Conference in RI last summer. Dr. Esco has been researching HRV for several years now. We have several projects tentatively planned and doing an HRV and RT study is one that we’ve been considering. Hopefully we can make it happen.

References

Camillo, C.A. et al. (2011) Improvements of heart rate variability after exercise training and its predictors in COPD. Respiratory Medicine, 105(7): 1054-1062

Cook, W.H., & Carter, J.R. (2005) Strength training does not effect vagal-cardiac control or cardiovascular baroreflex sensitivity in young healthy subjects. European Journal of Applied Physiology, 93: 719-725

Forte, R. et al. (2003) Effects of dynamic resistance training on heart rate variability in healthy older women. European Journal of Applied Physiology, 89: 85-89

Heffernan, K.S. et al. (2007) Heart rate recovery and complexity following resistance exercise training and detraining in young men. American Journal of Physiology – Heart & Circulation Physiology, 293: H3180-H3186

Kaltsatou, A. et al. (2011) The use of pupillometry in the assessment of cardiac autonomic function in elite different type trained athletes. European Journal of Applied Physiology, 111: 2079-2087

Kingsley, J.D., et al (2010). The effects of 12 weeks of resistance exercise training on disease severity and autonomic modulation at rest and after acute leg resistance exercise in women with fibromyalgia. Archives of Physical Medicine & Rehabilitation, 91: 1551-1557

Madden, K.M. et al. (2006) Exercise training and heart rate variability in older adult female subjects. Clinical & Investigative Medicine, 29: 1 – ProQuest

Melo, R.C. et al. (2008) High Eccentric strength training reduces heart rate variability in healthy older men. British Journal of Sports Medicine, 42: 59-63

Sloan, R. P., Shapiro, P.A., DeMeersman, R.E., Bagiella, E., Brondolo, E., McKinley, P.S., Slavov, I., Fang, Y., & Myers, M.M. (2009). The effect of aerobic training and cardiac autonomie regulation in young adults. American Journal of Public Health, 99(5), 921-928

HRV Reflects Detraining – Trend Analysis

Generally when I see a decline in my HRV trend it is because of illness, high stress or significant accumulation of fatigue. However, over the Christmas break I decided to take 2 weeks off from lifting. This decision was based mostly on the fact that I wouldn’t have access to my training facility until after the break. The last time I remember taking this much time off from lifting was back in 2006 when my appendix ruptured and I didn’t get to a hospital until about a 10 days later. I have a nice 6 inch scar on my lower right abdomen to remind me to go see a doctor sooner than later when I feel really sick. Needless to say I was forced to take some time off.

Below are some screen shots of my data that clearly show a steady decline in my HRV trend after approximately one week of training cessation.

RPE Trend Jan 10

–          Above you can see that my last workout before the break was on 12/21 and my first workout back was this Monday (01/07). Between those dates I performed 4 body weight workouts that were largely half-assed. I think my rationale for them was to justify eating all of those high calories meals over the holidays. Without these mini workouts I believe the trend would’ve shown a steeper decline.  HRV baseline dropped from about 80 to about 74 by the end of the detraining period.

–          The steepest dip in the trend came on New Year’s Day as a result of the overeating and drinking from New Year’s Eve. HRV responds poorly to partying.

–          The high point on 01/03 I believe was the result of a day that included a 1 hour massage, hot pools, sauna, steam room, cold tub etc.

–          Training resumed 01/07 and as expected strength levels were noticeably down and a workout that previously could be considered a deload was rated as an 8 and caused a pronounced dip in HRV the following day accompanied with extreme soreness. A clear sign that I’ve detrained. The same happened for Wedneday’s workout (01/09).

Data Jan 10

–          In the image above you can see that my HRV is lower than usual (baseline is typically around 80). 01/04 stands out to me as a HR of 61.4 is usually accompanied with a high 70’s – low 80’s HRV score but instead HRV is at 72.

trend change Jan 10

–          Above you can see my 3 month trend charted and my Daily, Week and Month change. You can clearly see my baseline HRV steadily decline in late December.

I can think of 2 stuides that investigated the effects of detraining on HRV.

In a study by Gamelin et al (2007), healthy young men (untrained, age 21) were put through 12 weeks of aerobic training followed by 8 weeks of detraining to determine its effect on HRV. An improvement in HRV was seen after the 12 weeks however HRV scores returned to pre-test levels after only 2 weeks of training cessation. “Twelve weeks of aerobic training are sufficient to achieve substantial changes in Heart Rate Variability; and only two weeks of detraining completely reverse these adaptations.”

–          My declining trend in HRV was reflecting my fitness levels, not my strength levels even though they also declined. My trend would’ve likely remained relatively unchanged had I maintained aerobic fitness.

In a recent study by Gutin et al. (2012), obese children were put through a 4 month exercise intervention. RMSSD (a time domain measure of parasympathetic tone) increased after the exercise period and decreased during the detraining period. Below are some excerpts from the study I felt were worth sharing;

“The variables that were significantly associated with individual differences in responsivity to the PT were: (1) the pre-PT RMSSD level—higher pre-PT values were associated with lower change scores (r= −0.28, p = 0.018);”

–          I’m curious to know what accounted for higher pre-training RMSSD values in those subjects. Were they more fit? Were stress levels just considerably lower? Is this a genetic thing? How does resting RMSSD pre-training effect training response? In research I discussed here, higher HRV levels pre-training resulted in larger improvements in fitness vs. the subjects with lower HRV levels pre-training in recreational endurance athletes (Vesterinen et al. (2011) and in soccer players (Oliveira et al. 2012).

“the change in vigorous physical activity (r = 0.25, p = 0.040)—those who increased most in vigorous activity increased most in RMSSD.”

“The primary result of this study was that the RMSSD increased during 4-month periods during which the obese children were engaged in PT, and declined in the 4-month period following cessation of PT in Group 1. This demonstration of what occurred as a result of increases and decreases in controlled vigorous activity supports the idea that regular exercise has a favorable influence on PSA in this population. “

–          These results obviously aren’t shocking and we don’t need HRV to tell us we are detrained. However, monitoring the trends allows us to ensure favorable responses to training. This becomes much more important in athletes or individuals engaging in intense physical training.

Wrap up

Only two weeks of training cessation will result in noticeable decrements in performance and a decrease in resting parasympathetic tone. In the future I will likely perform 1-2 maintenance type workouts each week to maintain strength and fitness levels.

References:

Gamelin, et al. (2007) Effect of training and detraining on HRV in healthy young men. International Journal of Sports Medicine, 28(7): 564-70

Gutin, B., et al. (2012) Heart rate variability in obese children: Relations to total body and visceral adiposity and relations to physical training and detraining. Obesity Research, 8(1): 12-19

Oliveira, RS. et al. (2012) The correlation between heart rate variability and improvement in soccer player’s physical performance. Brazilian Journal of Kinanthropometry, 14(6)

Vesterinen, V. et al. (2011) Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance athletes. Scandinavian Journal of Medicine & Science in Sports, DOI: 10.1111/j.1600-0838.2011.01365.x

A collection of thoughts on HRV and Sports Training

I’ve been having a lot of different thoughts running through my mind recently on various topics surrounding HRV and sports training. A lot of what I say today is based on a lot of the research I’ve been reading and comparing it to my personal experience with my own training and that of my athletes. I’ll try and organize it as best I can but it will be pretty random for the most part. Below are several topics that really deserve entire posts on their own however today I will just provide some quick thoughts on each one.

 

HRV as a predictor of Performance and or Adaptation

–          HRV appears to predict performance in aerobic athletes. I’ve discussed and cited this research in previous posts. However, in a new study by Chalencon et al. (2012) swim performance in elite athletes was related to parasympathetic activity.

 “the delay needed to return to the initial performance level was highly correlated to the delay required to return to the initial HF power level (p<0.01). The delay required to reach peak performance was highly correlated to the delay required to reach the maximal level of HF power (p = 0.02). Building the ANS/performance identity of a subject, including the time to peak HF, may help predict the maximal performance that could be obtained at a given time.”

See the full text here.

–          Prior to the initiation of intensive training, HRV values appear to predict training outcomes, again, mostly in aerobic athletes. Higher HRV values prior to training lead to better improvements in aerobic performance.  See here for more on this.

–          Higher HRV values on game day are correlated to better performance in amateur Basketball players (Di Fronso et al. 2012).

–          There are several factors that affect an athlete’s performance on any given day. By no means am I suggesting that one is doomed to poor performance if HRV isn’t high. I like the saying “psychology trumps physiology every time”. I think it was Alwyn Cosgrove who said that? Regardless, it’s very true. Furthermore pre-game anxiety can provide a skewed HRV result. More research on this needs to be done.

–           At the moment I do not believe that strength/power can be predicted by HRV on a day to day basis based on my experience. It likely play’s a factor but is certainly not determinant.

HRV as a reflection of recovery status

–          I believe this is one of HRV’s greatest attributes. Your level of fatigue after an intense workout or competition will be reflected in your HRV score. This is valuable for planning the weekly training so as not to load the athlete too soon after competition or too much before competition. In my experience this will usually correlate to perceived recovery. You can typically feel this. However, we cannot feel what our athletes are feeling. See Edmonds et al. (2012) for a study on elite youth rugby players for data on this subject.

–          Chen et al. (2011) showed that after an intense strength workout in elite weightlifters strength and HRV dropped. Strength did not return to baseline (or even above) levels until HRV returned to at or above baseline. This is one of the few studies that used HRV in strength athletes. Most coaches/trainee’s should already be aware that 1RM strength will be reduced for the net 24-48 hours after an intense workout but is cool to see that HRV may reflect the actual time period.

HRV as an early warning sign

–          Fatigue is ok, extreme fatigue is not. HRV is probably one of the first warning signs of fatigue. How much fatigue is okay? I think that first HRV will reflect that physical stress is accumulating. However, until performance changes, we likely needn’t change anything. If training is set up appropriately there should be enough rest/recovery for HRV to approach baseline at the end of each week. This will allow for a slower, more steady decline in the trend as opposed to a more rapid and steep decline which indicates excessive fatigue and overload. Planned overreaching should include the monitoring of several training status markers. HRV will respond early.

–          Researchers found that 3 elite tennis players saw significant reductions in HRV values over pre-season training however performance improved (Thiel et al. 2012). HRV alone does not indicate functional or non-functional overreaching. HRV did not correlate to performance markers but did correlate to other training status markers.

Limitations of Weekly or Monthly HRV Monitoring as opposed to higher frequency monitoring

–          Many studies I’ve read pertaining to athletes have measured HRV periodically (weekly, monthly, pre-post training phase, etc). This is much more practical for coaches as daily HRV measurements can be tedious and compliance can be hard to get from athletes. However, day to day measurements are more valuable as they allow the coach to make training adjustments before excessive fatigue builds up. However, if a coach could only use weekly HRV measurements with athletes I think these measurements would best be done the morning after a recovery day. HRV score at rest will provide the most meaningful information about training load/fatigue.

HRV in Elite vs. Non Elite Athletes

–          I have a lot of thoughts on this but will reserve comment until I do some more research on this. In short, I think there is a difference in how HRV data should be interpreted among these groups.

HRV in competitive athletes vs. Recreation lifters/athletes

–          HRV guided training (planning higher loads when HRV is at or above baseline and reducing them when HRV is below baseline) is likely safer and possibly more effective over longer term training. However, I don’t see how this method will work with athletes during shorter term training periods. Overload is required followed by a taper. Conversely, if your training results are not limited by requiring optimal performance at a certain date, HRV guided training will likely reduce risk of injury, illness, nagging join/soft tissue problems, etc. Recreational lifters would certainly benefit from this style of training.

Final thoughts for today

To be clear, the above are all simply thoughts/hunches I’ve been having. These are all incomplete at the moment and require further elaboration. Moreover, my stance on many of these topics are subject to change. My thoughts are limited by my experience and the research I’ve read. There is still a lot of work that needs to be done on HRV to uncover its potential as a monitoring tool in athletes.

References:

Chalencon S, Busso T, Lacour J-R, Garet M, Pichot V, et al. (2012) A Model for the Training Effects in Swimming Demonstrates a Strong Relationship between Parasympathetic Activity, Performance and Index of Fatigue. PLoS ONE 7(12): e52636. doi:10.1371/journal.pone.0052636

Chen, J., Yeh, D.,  Lee, J., Chen, C.,  Huang, C.,  Lee, S., Chen, C.,  Kuo, T., Kao, C., & Kuo, C. (2011) Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. Journal of Strength and Conditioning Research, 25(6):  1546-1552

Di Fronso, S. et al. (2012) Relationship between performance and heart rate variability in amateur basketball players during playoffs. Journal for Sports Sciences & Health, 8 (Suppl 1):S1–S70 45

Edmonds, RC., Sinclair, WH., and Leicht, AS. (2012) The effect of weekly training and a game on heart rate variability in elite youth Rugby League players. Proceedings of the 5th Exercise & Sports Science Australia Conference and 7th Sports Dietitians Australia Update. Research to Practice , 19-21 April 2012, Gold Coast, QLD, Australia , p. 183.

Oliveira, RS. et al. (2012a) Seasonal changes in physical performance and HRV in high level futsal players. International Journal of Sports Medicine. DOI: 10.1055/s-0032-1323720

Thiel, C. et al. (2012) Functional overreaching in preparation training of elite tennis professionals. Journal of Human Kinetics, DOI: 10.2478/v10078-011-0025-x

Reflections, Thoughts & Some HRV Data Analysis from 2 Athletes

This week Carl Valle had a great article posted on Mladen’s site here. It’s definitely worth the read if you train athletes. This article inspired me to reflect on where HRV fits in to training, for whom it may work best for and why. I monitor HRV in a very small number of athletes who are the minority of the overall pool of athletes I work with.

To get the most out of HRV tracking, I believe it should be measured daily, in the morning after waking. With ithlete this requires less than 2 minutes of your time to perform the measurement and make any comments, input training load, etc. Though this is a simple task, it is not easy to get full compliance from individuals. Therefore, I don’t even consider getting an athlete taking measurements unless he possesses a great deal of intrinsic motivation, is responsible, reliable, and perhaps most importantly, is interested. Though I would prefer they know nothing about the device, it’s hard to convince people to commit to using it every day if they don’t understand why. After a few sessions I will mention it to them and give them some basic details. If they appear interested or ask if they can use it then it’s a go.

I have several motivations for tracking HRV in select athletes. Below, these motivations are listed with some follow-up thoughts and elaborations.

  • To observe ANS response to training, daily stressors, recovery modalities, etc.

What was HRV score the day following a workout? What else did the athlete do that day that may influence this score? What has the overall trend been that week (positive or negative)?  I like to compare HRV score to other training status markers like strength levels (did he hit target weights for the day?), movement ability (how does he look during warm-ups, jumps, etc.?), perceived recovery/readiness levels (Does he feel great when HRV is high, when its low?), etc.

This motivation serves two purposes.

  1. It gets the athlete more engaged in his life style and training (more on this in a bit)
  2. It satisfies my curiosity. I’ve got questions I want answered.
  • To observe HRV trends over times of illness, injury, etc. to determine if there were early warning signs in the trend and if the trend reflects recovery/return to play readiness.

In the event of an injury during practice or competition, what was the trend indicating? In the past year or so I hurt myself once during training and it happened with 60% of my 1RM during squats (hardly a threatening situation). My HRV that day was well below baseline. Possibly a coincidence, or possibly injury risk is heightened when HRV is really low. To my knowledge, there is no research on this in human athletes, but this seems to be the case in race horses. I discussed some very interesting research by Dr. Christine Ross in this post from last winter.

Here’s an excerpt from that post.

“Dr. Christine Ross monitored the HRV of 16 competitive race horses, all of which were in training. Of the 16, 13 had HRV readings that were associated with pain, fatigue, illness or injury. It was stated that even though the horses appeared healthy and energetic, they were considered “at risk” based on their HRV. There were no outward signs or symptoms to suggest these horses were currently sick or hurt. Within 3 months, 12 of the 13 at-risk horses got injured or sick requiring veterinary intervention and cessation of race training.”

Furthermore, I work with plenty of football players and hockey players who by nature are at risk of concussion. What insight can HRV provide regarding recovery and return to play after concussion? (Perhaps a post on this in the future)

  • In rare cases, to manipulate training if HRV has been consistently below baseline and the athlete displays signs of fatigue.

This is an interesting topic. Working with an athlete is rarely long term. In many cases you may only have 6-8 straight weeks of consistent training before interruption. That means we need to get them better quickly. Getting better can be defined in many ways but in the training realm this means improving strength, speed, power, work capacity, etc. To do this we need to apply stress. In some cases, a lot of stress, of various kinds. Naturally, HRV will drop. The organism has to work hard to adapt to the stress (and thus improve). We don’t have time to wait for “optimal” recovery and this is likely not even desirable.

Let me use an example. Below is the HRV trend of a 25 year old hockey player I’m working with. He’s come to me to get in shape for a try-out he’s been invited to for a pro team in Germany.

A.E.Trend

He is a former NCAA hockey player and has been training relatively consistently throughout school. After this summer he thought he was done with competitive hockey and stopped training however he did start playing men’s league hockey.  Since he hasn’t been training I knew we’d probably see some pretty big downward deflections after our first few workouts. He missed a few mornings of HRV measurements but it’s been about 2 weeks since we started. The “week change” is -8 and his HRV trend is steadily decreasing. His strength is steadily improving as is his conditioning. He’s adapting fast and re-acquiring lost strength and fitness. Training loads are steadily increasing every week. Now that it’s Christmas I expect to see his HRV bump back up due to some extra rest and likely extra calorie intake. So long as HRV approaches baseline levels after a few days of rest then I think things are looking good. However, if HRV continues downward I will evaluate performance markers and make adjustments if necessary. The physical stress load is high as reflected by his HRV but it’s only been 2 weeks and his performance markers are improving. The weekly trends will likely continue to decrease until about 2 weeks out from the try-out at which point I’ll steadily reduce loads. HRV should climb back up and fatigue should dissipate. This is what happens when I have a relatively short period of time to work with an athlete.

In contrast, the trend below is of a high school sprinter I’m working with. He trains with his sprint coach and works with me for recovery/restoration, mobility, etc. He has a sub 11s 100m time and is one of the fastest high school sprinters in Canada. He is much more long term and his training load reflects that. His weight training volume has been reduced quite a bit and has transitioned into more sprint work and power development in the weight room (controlled and implemented by his Sprint Coach).

ZW Trend

This is an athlete who takes care of himself and is extremely motivated to get better, to say the least. He reports that training is going well, he’s hitting PR’s and it looks as though he’s handling training almost too well. Higher loads would be likely well tolerated. If I can just start getting him to get to bed at a decent hour on weekends he’ll be doing everything right.

In both cases the athletes have learned how lifestyle factors outside of training effect their recovery, soreness levels, etc. This is directly attributed to seeing their HRV trend, recognizing what events may have caused the additional stress and re-evaluating there decision making. One of the main things I like about HRV is that it forces you (and the athlete) to be more engaged in the process. It allows them to see how their actions (good or bad) can effect the quality of their training and their progress.

Final Thoughts

Having HRV records as an objective measure of training status helps guide the training process when taken with other markers of performance and fatigue. If the athlete is a high level athlete, mature enough to handle daily measurements and wants to use it then I am all for it. I don’t use it with many athletes because it would be a waste of time and energy for both parties. However, with the right athletes it can be a great tool to for monitoring training.

HRV Values: Indications of Training Readiness

In my recent articles on HRV in Team Sports, I discussed the idea of having our athletes report to pre-season camp with favorable autonomic profiles prior to the initiation of intensive training. The goal of this being to enhance adaptation and reduce injury potential. Today I’d like to delve into this topic a little deeper.

First I’d like to review some important research that helped form the basis of this thought process. Other, more intelligent minds thought of this stuff way before I did and have produced what I consider to be, some pretty compelling research.

Research

Vesterinen and colleagues (2011) found that recreational endurance runners who had high baseline HRV levels prior to intensive training improved their performance significantly more than runners who had low baseline HRV levels prior to training.

Oliveira and colleagues (2012) found a strong correlation between parasympathetic indices of HRV (analyzed before training) with the performance improvement in Yo-Yo IR1 in soccer players during pre-season training.

Hedelin and colleagues (2001) set out to investigate relationships between HRV and central and peripheral performance measures in various trained endurance athletes over a 7 month period. The authors reported that; “higher parasympathetic activity, at least in these fit subjects, rather was a cause than an effect of a further increase in aerobic fitness.”

Kiviniemi et al (2007) found that in fit males, training when HRV levels are at baseline or above results in significantly higher improvements in maximum running velocity and greater improvements in vo2 max compared to a group that followed pre-planned training, of which saw insignificant changes in both measures.

In a repeat study Kiviniemi et al (2010) included female groups and found that females take longer to recover from a training session and that fitness can be improved with fewer high intensity training days when guided by HRV compared to the pre-planned training group

Hautala et al (2003) reported that baseline HF Power was the most powerful determinant of future training response in healthy subjects. I strongly urge interested readers to read through this review by Hautala et al (2009) for a thorough discussion on this topic.

I’m certain I’m leaving out some good research but I think you get the idea. There is evidence to suggest that HRV levels can be a good indicator of training response in athletes and fit individuals.

Discussion

A couple issues I’m having with the evidence as it applies to team sport settings;

  1. HRV measurement is different in much of the research. Some is nocturnal, some is morning, etc. Therefore, we can’t say for certain if we can draw similar conclusions based on a morning measurement if the researchers used nocturnal HRV measurements. Having said that, I do feel that morning measurements are sufficient, if not optimal.
  2. The research mostly pertains to aerobic athletes and aerobic training. However, given that most team sports require a sufficient level of aerobic capacity I still think the discussed research offers valuable information. Even in a sport like American Football, many of the drills are serial and repetitive in nature and thus places a greater dependence on energy production from aerobic metabolism. Further, repeated sprint ability is related to oxygen uptake during rest periods (Dupont et al. 2010).

It appears that having a high level of resting parasympathetic tone prior to intensive training results in more favorable responses and performance improvements in athletes. The research suggests that HRV levels appear to reflect adaptive potential. It should be of high priority to the coaching staff that players remain healthy throughout training. Keeping tabs on HRV levels throughout training, taken with other measures of training status, may reveal maladaptation and therefore a necessitation for intervention.

I’d personally like to see HRV levels monitored in Collegiate American Football players throughout pre-season training camp. It’s conceivable that injury risk is heightened in athletes showing consistent decrements in HRV. It surprises me that there is very little research on HRV and injury (risk, recovery, return to play, etc) in comparison to HRV and performance enhancement/monitoring.

Whether or not we can apply this to strength/power athletes is not clear as there is very little research on this. It’s been a personal goal of mine to investigate this issue and I hope to do this at some point in the future.

Provided that athletes are engaging in training throughout the off-season having a high level of parasympathetic tone at rest shouldn’t be an issue. Team sport athletes will generally have low resting heart rates and a high work capacity. The concern would be with athletes that are either not preparing themselves for intense training, or with those that may be over doing it.

Apart from aiming to have high HRV levels prior to training we may also want to use HRV as an indicator of recovery status day to day. During intense training periods, recovery and restoration modalities can aid in parasympathetic re-activation and therefore more rapid recovery. Paying closer attention to nutritional strategies, active recovery, cold water immersion (a controversial topic at the moment it seems) sleep quality and duration, etc. may help us in maintaining favorable ANS activity; perhaps a topic for another day.

References:

Dupont, G., et al. (2010) Faster oxygen uptake kinetics during recovery is related to better repeated sprint ability. European Journal of Applied Physiology, (110)3: 627-34

Hautala, A.J., et al. (2003) Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. American Journal of Heart & Circulatory Physiology, 285(5): H1747–52.

Hautala AJ, et al. (2009)Individual responses to aerobicexercise: the role of the autonomicnervous system. Neuroscience & Biobehavioral  Reviews, 33(2): 107–115.

Hedelin, R. et al. (2001) Heart Rate Variability in athletes: relationship with central and peripheral performance. Medicine & Science in Sports & Exercise, 33(8), 1394-1398.

Kiviniemi, A.M., Hautala, A., Kinnumen, H., & Tulppo, M. (2007) Endurance training guided by daily heart rate variability measurements. European Journal of Applied Physiology, 101: 743-751.

Kiviniemi, A.M., Hautala A.J., Kinnunen, H., Nissila, J., Virtanen, P., Karjalainen, J., & Tulppo, M.P. (2010) Daily exercise prescription on the basis of HR variability among men and women. Medicine & Science in Sport & Exercise, 42(7): 1355-1363.

Oliveira, RS. et al. (2012b) The correlation between heart rate variability and improvement in soccer player’s physical performance. Brazilian Journal of Kinanthropometry, 14(6)

Vesterinen, V. et al. (2011) Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance athletes. Scandinavian Journal of Medicine & Science in Sports, DOI: 10.1111/j.1600-0838.2011.01365.x

Recent HRV trend analysis and a new collaboration

As I try and further my understanding of the seeming incomprehensible autonomic nervous system I try to simplify the role HRV may play in monitoring athletes. There is one main issue I’m having; I don’t yet fully grasp the ANS (does anyone?) and therefore I still have a ton of unanswered questions.

I’ve noticed that there are some extremely intelligent people who are strong advocates of HRV usage as a monitoring tool. I’ve also noticed there are equally as intelligent people who are very skeptical and even doubtful of its efficacy and applicability. I’m doing my best to understand both sides of this argument. The best I can do to contribute to this discussion (at the moment) is draw attention to research and offer personal experience.

It’s been a while since I’ve posted and discussed some of my HRV trends so today I will do this as well as share some observations a colleague of mine has made at McMaster University.

Below is a screen shot of my HRV trend from the last 30 days:

  • Horziontal Blue Line = HRV Baseline
  • Vertical Purple Bars = sRPE (absence of these indicate no training)
  • White Lines = Day to day HRV scores

Training structure has been as follows:

  • Monday – Squat
  • Tuesday – Active Recovery
  • Wednesday – Bench Press
  • Thursday – Active Recovery
  • Friday – Deadlift
  • Saturday – Off
  • Sunday – Off

Strength workouts range from an RPE rating of 7-9 while the low intensity “recovery” days range between 3-5.

dec 2012 trend

Observations:

  • Much of what I’ve seen is consistent with what I documented in this post so I won’t discuss these in too much depth again.
  • Normally my HRV will be at or above baseline after a weekend (no training). In the first weekend you see my HRV dropped quite a bit Monday morning. I assume this is because I was away that weekend and I spent much of Sunday in the car and then was frantically trying to get caught up on things once I got home before Monday.
  • I trained at an sRPE of 8 on Monday and as expected another drop and a red indication for Tuesday. Active recovery typically will bump HRV back up the next day however Tuesday night I unknowingly went to sleep with my friends cat hiding under my bed. Around 2am I got a startling wake up as the animal tried to snuggle with my face. It took me nearly 2 hours to fall back asleep after. HRV that morning is another red and I feel like crap. I take a deload day on Bench  (sRPE 7), sleep well and HRV comes back up the next morning.
  • Things remain consistent during the week shown in the middle of the trend. Moderate dips in HRV in response to sRPE 8’s with returns to baseline after low intensity days. HRV is high after a restful weekend.
  • The following week I start doing a little more work in my workouts (more heavy sets) and therefore a higher sRPE rating (of 9). Along with higher amounts of soreness and perceived fatigue I saw larger dips in HRV the following day. On Friday (deadlift day) I keep things conservative due to previous lower back injuries and perform an sRPE of 8 and see less of a drop in HRV the next day. I’m happy to report that the back has been feeling good and I have started deadlifting again recently. I stopped deadlifting  for a while as I was experiencing pain during the lift (no surprise it was an underactive multifidus) Video below of a recent deadlift.
  • HRV is high after a restful weekend. sRPE of 9 on Monday (squat) of the last week shown on the image and I again see a larger dip in HRV (today). Will do some low intensity stuff later on after work.

Collaborating with Steve Lidstone at McMaster University

Since moving back to Canada I’ve been working on getting an HRV project going with Steve Lidstone, the head strength coach at McMaster University (a huge rival of mine in my football days). After some e-mail discussions I sent Steve an ithlete to try out. After a few weeks Steve sent me this update;

“I’ve been monitoring my HRV for 3 weeks now every morning.

I started off with HRV at 88 with a HR of 60bpm.

In times of poor sleep (we have 2 kids ages 2 & 4) or high stress my HRV has plummeted to 55 and resting HR of 79.

It is also interesting to me as I am in my 5th week of post concussion symptoms. When my HRV is low my symptoms are escalated.”

At this point we’re looking at getting two of his teams started with ithlete (about 8 players in total). Should make for some good data to discuss.

HRV in a Team Setting: Follow-up Thoughts

Today I am going to share some thoughts on why I think HRV is useful for monitoring athletes individually or in team settings. However, I will state upfront that among the research, HRV analysis varies a great deal in important variables such as; position, time of day, duration of measurement, frequency of measurements, analysis (time domain, frequency domain) and populations (type of athlete, gender, age, etc.).  Therefore, the monitoring of a specific variable (performance, recovery, stress, etc.) requires careful consideration of methodology. I would also like to make it abundantly clear that HRV monitoring is most effective when considered with other variables (RPE, POMS, etc.).

For the purposes of safe, effective and efficient improvement in sport performance, HRV monitoring can be extremely valuable. As a non-invasive measure of autonomic status, HRV provides an objective measure of the collective stress load (emotional, physical, and physiologic) that an athlete carries.

HRV and Training Load

I’d like to preface this section by saying that although HRV reflects training load reasonably well, we need to be careful of not being too presumptuous. The ANS is an incredibly complex system that is impacted by damn near everything we do and experience (training, nutrition, emotion, etc.). Therefore, being cognizant of our athletes stresses (or of our own if we use HRV for our own training) outside of sport is critical. Looking for a perfect correlation between training load and HRV score is not looking at the big picture.  I was guilty of this in the past.

In a team setting, athletes are often subjected to the same workloads, be it in the weight room or on the field. Monitoring individual responsiveness to training provides coaches with a handle on training program efficiency and quality of effect.

  • What does HRV alone tell us?

My understanding of HRV is that once baseline is established (though baseline is not static) HRV reflects autonomic balance. An imbalance indicates stress. For example; If parasympathetic tone is unusually low or high compared to baseline values, something is going on; a red flag.

ans_imbalance

  • Analysis:

Through monitoring of training volumes/load, self reported stress, etc. we can try and assume the cause of the imbalance.  What can the change in HRV be attributed to? It is likely a combination of the physical and mental stress of training/sport however this may require further investigation. Tracking performance markers and other variables in conjunction with HRV will allow for an appropriate mode of action for a red flagged or “at-risk” athlete.

From my understanding of the research we can associate certain changes in HRV patterns with a specific interpretation.

  • Small but consistent decrements in HRV over a training period: training loads are appropriate as fatigue is expected to accumulate but not to an unreasonable level.
  • Large changes in HRV over a training period: This is a red flag. There is a marked imbalance indicating high stress. Reduce loads until HRV approaches baseline values.
  • No change or small increases in HRV over a training period: Training stress levels are below the athletes capacity and therefore increased loads will likely be well tolerated.

I must reiterate that other measures of performance and training status should obviously be considered before trying to infer any meaning from an HRV score.

For those using ithlete or bioforce keeping tabs on the weekly and monthly changes can be extremely valuable as this gives a better idea of overall patterns. I picked this tip up from Joel Jamieson at the CVSPS last spring.

In a perfect world, our athletes report to pre-season camp in shape. A high level of fitness is typically associated with high HRV, lower resting heart rates and a high tolerance to physical stress (fast recovery) – I realize I’m preaching to the choir here.

Furthermore, it appears that better conditioned athletes handle inflammation better (Martin-Sanchez et al. 2011) or is this a genetic thing? We know elite athletes typically have good genetics (for their craft); does this include more favorable inflammatory responses and is this common among most elite athletes? Perhaps someone can chime in on this? Regardless, this is important because there is a strong link between inflammation and HRV (Kylosov et al. 2009, Thayer 2009, Soares-Miranda 2012).

Continuing with our hypothetical situation; these conditioned athletes should respond well to the high volumes of training. In contrast, less conditioned athletes will become easily overloaded from the commencement of pre-season training and may be at a greater risk of injury, premature overreaching, emotional distress, etc.

This was what I was trying to get at when I was thinking about the possibility of trying to create favourable autonomic profiles of athletes prior to intensive training. The concept isn’t new as we are insistent that our athletes train over the summers and prepare for camp. Monitoring HRV throughout this time may be a good indicator of physical condition. We want to see HRV profiles that indicate a high level of fitness and tolerance for stress.

This leads me to the next topic…

Practicality

Referring back to the CVSPS last spring I distinctly remember Landon Evans say during his presentation something to the effect of; “Come on guys, HRV in the collegiate setting? Really?”. He’s absolutely right. Monitoring HRV in the collegiate setting is not easy! It’s especially difficult if you are responsible for multiple teams. Football players may in fact be the hardest group of athletes to get HRV data from.

Having said this, I believe that it can be done if it’s important enough to you and the coaching staff. This doesn’t mean you’ll get all 100 guys on the roster taking measurements, but perhaps starting with key players, starters, etc. is more realistic. Dealing with smaller teams (basketball, volley ball, tennis, etc.) is a bit more doable but a challenge nonetheless.

If using HRV as a monitoring tool is important to you, start small and progress from there. Every coach will have different resources and circumstances and therefore it’s hard to generalize. I look forward to the release of the ithlete Team HRV system as this will make this process much easier. From my understanding of the product, athletes will be able to take their measurement at home on their smart phone and the data will automatically be uploaded to a web based interface that will allow the coaches/sports medicine staff to see all players’ trends on the same chart. Red flagging at-risk athletes will be much easier and quicker with this system.

Wrap UP

Is HRV an effective monitoring tool? I think it is. Based on personal experience and the research, there is quite a bit of evidence to support its efficacy. Taking into consideration other measures of performance and training status HRV gives you an important and objective measure of the athletes overall stress levels.

However, I urge all readers to keep in mind that I am not an expert on this stuff. I theorize a lot so take my articles with a grain of salt. For all I know, there are several researchers over in Europe cursing my name for completely misinterpreting their research. Hopefully this isn’t the case.

I will write on this topic again in the future as I still have plenty of thoughts on the issue. Only so much can be discussed in one article. Thoughts for another time: HRV and performance prediction, HRV and injury, HRV as an early warning sign and more.

I decided not to discuss and cite a ton of research today since I’ve done this in plenty of previous posts. Instead I will just provide references as recommended reading so I don’t come off as baseless in my thoughts and allows readers to investigate this topic for themselves.

Further Reading/References in Team Settings:

Baumert, M. et al. (2006) Changes in heart rate variability of athletes during a training camp. Biomed Tech, 51(4): 201-4.

Cipryan, L. & Stejskal, P. (2010) Individual training in team sports based on ANS activity assessments. Medicina Sportiva, 14(2):  56-62 Free Full-Text

Cipryan, L., Stejskal, P., Bartakova, O., Botek, M., Cipryanova, H., Jakubec, A., Petr, M., & Řehova, I. (2007)  Autonomic nervous system observation through the use of spectral analysis of heart rate variability in ice hockey players.  Acta Universitatis Palackianae Olomucensis. Gymnica, 37(4): 17-21. Free Full-Text

Di Fronso, S. et al. (2012) Relationship between performance and heart rate variability in amateur basketball players during playoffs. Journal for Sports Sciences & Health, 8 (Suppl 1):S1–S70 45

Dranitsin, O. (2008) The effect on heart rate variability of acclimatization to a humid, hot environment after a transition across five time zones in elite junior rowers. European Journal of Sport Science, 8(5): 251-258 Abstract

Edmonds, RC., Sinclair, WH., and Leicht, AS. (2012) Theeffect of weekly training and a game on heart rate variability in elite youth Rugby League players. Proceedings of the 5th Exercise & Sports Science Australia Conference and 7th Sports Dietitians Australia Update. 5th Exercise & Sports Science Australia Conference and 7th Sports Dietitians Australia Update Research to Practice , 19-21 April 2012, Gold Coast, QLD, Australia , p. 183. Abstract

Hap, P., Stejskal, P. & Jakubec, A. (2010) Volleyball players training intensity monitoring through the use of spectral analysis of HRV during a training microcycle. Acta Universitatis Palackianae Olomucensis. Gymnica, 41(3): 33-38 Free Full-Text

Iellamo, F., Pigozzi, F., Spataro, A., Lucini, D., & Pagani, M. (2004) T-wave and heart rate variability changes to assess training in world class athletes. Medicine & Science in Sports and Exercise, 36(8): 1342-1346. Abstract

Ke-Tien, Y.(2012) Effects of Cardiovascular Endurance Training Periodization on Aerobic performance and Stress Modulation in Rugby Athletes. Life Science Journal, 9(2): 1218-25. Full-Text

Martin-Sanchez, F. (2011) Functional status and inflammation after preseason training program in professional and recreational soccer players: a proteomic approach. Journal of Sports Science & Medicine, 10: 45-51 Free Full-Text

Mazon, J. et al. (2011) Effects of training periodization on cardiac autonomic modulation and endogenous stress markers in volleyball players. Scandinavian Journal of Medicine & Science in Sports, doi: 10.1111/j.1600-0838.2011.01357.x Free Full-Text

Oliveira, RS. et al. (2012a) Seasonal changes in physical performance and HRV in high level futsal players. International Journal of Sports Medicine. DOI: 10.1055/s-0032-1323720 Abstract

Oliveira, RS. et al. (2012b) The correlation between heart rate variability and improvement in soccer player’s physical performance. Brazilian Journal of Kinanthropometry, 14(6) Abstract

Parrado, E.  et al. (2010)Percieved tiredness and HRV in relation to overload during a field hockey world cup. Perceptual and Motor Skills, 110(3): 699-713 Abstract

Rodas, G. et al. (2011) Changes in HRV in field hockey players during the 2006 World Cup.Apunts Medicina de l’Esport, (46): 117-123 Abstract

Vantinnen, T. et al. (2007) Practical experiences from measuring exercise intensity and recovery state with HR monitoring in team sport. Symposium Proceedings 6th IACSS Calgary, Alberta. Full-Text

 

Further Reading/References in athletes thought not necessarily in team settings:

Atlaoui, D. et al. (2007) Heart rate variability training variation and performance in elite swimmers. International Journal of Sports Medicine, 28(5): 394-400

Bosquet, L., Merkari, S., Arvisais, D., Aubert, A.E. (2008) Is heart rate a convenient tool to monitor over-reaching? A systematic review of the literature. British Journal of Sports Medicine, 42(9): 709-714.

Botek, M. et al. (2012) Return to play after health complications associated with infection mononucleosis guided on ANS activity in elite athlete: a case  study. Gymnica, 42(2)

Buchheit, M. et al (2009) Monitoring endurance running performance using cardiac parasympathetic function. European Journal of Applied Physiology, DOI 10.1007/s00421-009-1317-x

Chen, J., Yeh, D.,  Lee, J., Chen, C.,  Huang, C.,  Lee, S., Chen, C.,  Kuo, T., Kao, C., & Kuo, C. (2011) Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. Journal of Strength and Conditioning Research, 25(6):  1546-1552

Hedelin, R., Bjerle, P., & Henriksson-Larsen, K. (2001) Heart Rate Variability in athletes: relationship with central and peripheral performance. Medicine & Science in Sports & Exercise, 33(8), 1394-1398.

Hellard, P., et al. (2011) Modeling the Association between HR Variability and Illness in Elite Swimmers. Medicine & Science in Sports & Exercise, 43(6): 1063-1070

Huovinen, J. et al. (2009) Relationship between heart rate variability and the serum testosterone-to-cortisol ratio during military service. European Journal of Sports Science,9(5): 277-284

Kiviniemi, A.M., Hautala, A., Kinnumen, H., & Tulppo, M. (2007) Endurance training guided by daily heart rate variability measurements. European Journal of Applied Physiology, 101: 743-751.

Kiviniemi, A.M., Hautala A.J., Kinnunen, H., Nissila, J., Virtanen, P., Karjalainen, J., & Tulppo, M.P. (2010) Daily exercise prescription on the basis of HR variability among men and women. Medicine & Science in Sport & Exercise, 42(7): 1355-1363.

Kylosov, AA. et al. (2009) Changes in inflammatory activity, heart rate variability, and biochemical indices in young athletes during the regular training cycle. Human Physiology, 35(4): 465-478.

Manzi, V. et al (2009) Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners. American Journal of Physiology, 296(6): 1733-40

Mourot, L. et al (2004) Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clinical Physiology & Functional Imaging, 24(1):10-8.

Nigam, A.K. (2010) Resting heart rate and overtraining in athletes. International Referred Research Journal, 2(21): 38-40.

Pichot, V., Busso, T., Roche, F., Gartet, M., Costes, F., Duverney, D., Lacour, J., & Barthelemy, J. (2002) Autonomic adaptations to intensive overload training periods: a laboratory study. Medicine & Science in Sports & Exercise, 34(10), 1660-1666.

Soares-Miranda, L. et al. (2012) High levels of C-reactive protein are associated with reduced vagal modulation and low physical activity in young adults. Scandinavian Journal of Medicine and Science in Sports, 22(2): 278-84

Thayer, J. (2009) Vagal tone and the inflammatory reflex. Cleveland Clinic Journal of Medicine, 76(2): 523-526

Tian, Ye. et al. (2012) HRV threshold values for early warning non-functional overreaching in elite women wrestlers. Journal of Strength and Conditioning Research, Published ahead of print

Uusitalo, A.L.T., et al (2000) Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. International Journal of Sports Medicine, 21(1): 45-53

HRV Monitoring in a Team Setting: The Research

Though my original interest in HRV monitoring was for personal usage with my powerlifting training (and still is), I have become much more interested in its application with my athletes. In July, I wrote a post discussing some of the research and my thoughts on HRV in a team setting. I’ve come across some more great research that pertains to HRV monitoring in team settings and would like to share some thoughts on the topic.

Below is a  list of questions I’d like to address:

  • How effective is HRV monitoring in a team setting really?
  • What difference is there, if any, when monitoring HRV in elite vs. sub-elite athletes?
  • How practical is HRV monitoring in a team setting?
  • Can we create favorable autonomic profiles in athletes prior to intensive training blocks to improve global (all players) responsiveness to training? (to avoid injury, overtraining, etc)
  • How can we apply research that used frequency domain measures (HF, LF, HF/LF) with mobile apps/devices like ithlete and Bioforce that use RMSSD, a time domain measure of parasympathetic tone?

Keep in mind that I do not train elite athletes and therefore much of what I discuss is based on my interpretations of the research, discussions I’ve had with others and some theory. I certainly am not capable of providing answers to any of the above question.

First, I’d like to present brief summaries of the research I’ve read on the topic. I’ve only included studies that used HRV to monitor fatigue, training load, etc. At this time I’m not including studies using HRV during exercise, or post-exercise.

In some cases I could not get access to the full-text which you will see noted in the respective tables. Please enlighten me of any research on this topic I may have not included. I apologize for the poor presentation of the table’s below. I originally had all of this in a more reader friendly format in Word but for some reason it does not transfer over to wordpress very well.

Author Ke-Tien (2012)
Sport Male, National Level Rugby (n=24)
Aim To verify biological and psychological stress markers during strenuous cardiovascular endurance training periodization, using Profile of Mood States questionnaires, HRV & blood urine nitrogen as the criteria measurements.
Main Findings HRV correlated to profile of mood states survey and blood-urnine nitrogen in elite male national rugby players (n=24).
HRV Analysis Non-daily, Frequency Domain
Author Edmonds et al. (2012)
Sport Male, Elite Youth Rugby (n=9)
Aim To investigate the influence of weekly training & a competitive game on HRV in elite youth rugby league players, & to identify the importance of HRV as a monitoring tool for Rugby League player preparation.
Main Findings Prior to a match, elite youth, players exhibited a significant reduction in HRV that was sustained for at least 24 hours post-game. This withdrawal of parasympathetic &/or increased sympathetic control of HR possibly may result from pre-match anxiety as well as the physical demands of the game. Strong relationships between HRV and training load at Pre-2 indicate that early monitoring may assist in identifying training workloads for the upcoming week.
HRV Analysis Daily, Time & Frequency Domain
Author Oliveira et al. (2012a)  – Abstract Only
Sport Male, Elite Futsal (n=11)
Aim The aim of this study was to determine the changes in physical performance and resting heart rate variability (HRV) in professional futsal players during the pre-season and in-season training periods.
Main Findings Players improved their RSA & Yo-Yo IR1 performance with concomitant improvements in HRV. These indices were maintained during the in-season period while RSAbest was improved & RSAdecrement impaired. Frequent monitoring of these performances and HRV indices may assist with identification of individual training adaptations and/or early signs of maladaption.
HRV Analysis Non-daily, Unknown
Author Vantinnen et al. (2007)
Sport Male, Elite Soccer (n=24)
Aim To introduce a method commonly used in Finnish sport to monitor the exercise intensity & changes in recovery state of players in team sports by examining their heart rate (HR/HRV) responses to training & relaxation stimulus.
Main Findings Individual differences do exist in practices & games. This would imply that coaches need to quantify each game or practice exercise intensity & recovery for each individual, in order to organize & optimally prepare an individual training plan for each athlete.
HRV Analysis Various over 3 weeks (daily, nocturnal, 24 hr), Time and Frequency Domain
Author Oliveira et al. (2012b) – Abstract Only
Sport Male, Caliber Unknown, Soccer (n=10
Aim The aim of this study was to analyze whether the heart rate variability (HRV), assessed at the beginning of a soccer preseason, reveals a correlation with the improvement of physical performance over this training period.
Main Findings There were significant improvements in Yo-Yo IR1 performance & in the 30-m sprint time. The qualitative analysis revealed that the differences in Yo-Yo IR1 performance were very likely positive, were almost certainly positive for the sprint, but were inconclusive for the vertical jump. There was a strong correlation between one parasympathetic index and the change in performance. The study showed a strong correlation between parasympathetic indices of HRV with the performance improvement in Yo-Yo IR1 in the athletes during pre-season.
HRV Analysis Non-daily, Unknown
Author Rodas, G. et al. (2011) – Abstract Only
Sport Elite, Field Hockey (n=? entire team)
Aim To determine the changes in HRV during the 2006 World Cup
Main Findings HRV decreases progressively & the values of the parameters related to parasympathetic system activity (RMSSD & HF) reduce, which are indicative of good psychic-physical adaptability to the workload. At the same time, the value of the parameters related to sympathetic system activity (LF and LF/HF) increases, suggesting an increase in fatigue, tiredness and poor adaptability in general. Consequently, the analysis of HRV may be a good marker for monitoring the psychic-physical state, cardiovascular adaptability during exercise & a possible state of physical overload in athletes participating in competitions.
HRV Analysis Day of competitions only – Time and Frequency Domain
Author Martin-Sanchez et al. (2011)
Sport Male Pro Soccer (n=12) & Age/Sex matched Amateur Soccer (n=9)
Aim To determine if an intensive preseason training program modifies the inflammatory status in professional soccer players and if this inflammatory profile may be associated with the physical state.
Main Findings A negative association between cardiac low frequency & the plasma content of alpha-1 antichymotrypsin isotype 4, & a positive association between cardiac low frequency & fibrinogen gamma-chain isotype 3 was found. Our results suggest that the cardiac functional state of soccer players may be correlated with these proteins. Pro soccer players showed a decreased content of circulating proteins associated with inflammation compared with those in recreational soccer players.
HRV Analysis Morning of analysis – Time and Frequency Domain
Author Cipryan et al. (2010)
Sport Male, Hockey Junior Level (n=8), Adult (N=10)
Aim To present inter-individual differences in the reaction of autonomic nervous system (ANS) activity to the same training program, and to thereby support the importance of individual training in team sports during the conditioning period.
Main Findings The SA HRV monitoring mostly revealed significant differences in the level of the ANS activity among the players. A number of junior & adult players were characterized by almost permanently high ANS activity whereas other players occurred below the ANS activity level of healthy individuals.  The training efficiency (overreaching and injury reduction) can be positively influenced by creating training groups of players with similar ANS activity.
HRV Analysis Non-daily – Frequency Domain
Author Cipryan et al. (2007)
Sport Male, U-18 National Level Hockey (n=4)
Aim To investigate the influence of regular sport training on the activity of the autonomicnervous system (ANS) and to disclose patterns of interrelations between them.
Main Findings The results demonstrated that the player with the highest average TS (total score)& the highest average PT(total power) also showed the most consistent results & objectively the best performance in sport. On the other hand, the player with the lowest average TS and the lowest average PT also obtained the lowest average mark in the coach’s evaluation of his sports performance. The tendency to progression of the ANS  activity was different for each subject. The self-reports health status survey, which was given before measurements were taken, did not correspond with the results of the SA HRV measurement.
HRV Analysis Non-daily, Frequency Domain
Author Hap et al. (2010)
Sport Male, High Level Volleyball (n=8)
Aim The goal of the work was to verify the possibility of volleyball playersʼ training load optimization during a one week training microcycle based on the longitudinal observation of dynamics of SA HRV complex indices.
Main Findings 2 Players had above average levels ANS activity indicating higher training loads could be tolerated.4 Players had low ANS activity (but not below average) showing evidence of some fatigue and adaptation. Training loads are appropriate.

2 Players had below average ANS activity and their training adaptability was reduced.

HRV Analysis Daily – Frequency Domain
Author Parrado et al. (2010) – Abstract Only
Sport Elite, Field Hockey (n=? entire team)
Aim The aim of the study was to examine the utility of perceived tiredness to predict cardiac autonomic response to overload among feld hockey players during the 2006 World Cup.
Main Findings Results showed a negative correlation between perceived tiredness scores & time domain indexes, & a positive correlation of perceived tiredness scores and the high frequency component ratio (LF/HF ratio) of heart rate variability. Anxiety did not influence the precompetitive cardiac response despite somatic anxiety’s correlation with sympathetic response (LF/HF ratio) & tiredness scores. Perceived tiredness predicted the autonomic cardiac response to competitive overload. Thus, the perceived tiredness assessment would be a good early marker of fatigue & overload states during competition
HRV Analysis Day of analysis, Frequency Domain
Author Mazon et al. (2011)
Sport Male, Volleyball (n=32)
Aim To investigate the effects of selective loads of periodization model (SLPM) on autonomic modulation of HRV and endogenous stress markers before and after a competition period in volleyball players.
Main Findings SLPM did not change the cardiac autonomic modulation of HRV, but promoted beneficial adaptations in athletes, including positive changes in the plasma concentration of the endogenous stress markers. The absence of changes in HRV indicates that there is no direct relationship between cardiac autonomic modulation & endogenous stress markers in the present study.
HRV Analysis Pre & Post Training Cycle, Frequency Domain
Author Di Fronso et al. (2012)  – Abstract On
Sport Male, Amateur Basketball (n=7)
Aim To investigate the relationship between Heart Rate Variability (HRV) and performance in players of a basketball team during playoffs.
Main Findings Findings of this study suggest that vagal activity, expressed by HF index of HRV, can be positively related to the athletes’ performance. In particular, higher values of HF index during the morning of the match were associated with higher levels of athletes’ performance during the game.
HRV Analysis Morning of Competitions – Frequency Domain
Author Dranitsin (2008)
Sport Elite Male (n=12) and Female (n=1) Rowers
Aim The aim of this study was to examine the simultaneous effect on HRV of acclimatization to a hot, humid environment and a transition of five time zones in elite junior rowers.
Main Findings Major physiological adaptation of HRV indices in the standing position during acclimatization to a humid, hot environment, with a transition across five time zones, occurs within the first 5 days in elite athletes before returning to baseline. Indices of heart rate variability in the supine position correlate with the length of high-intensity training sessions on the previous day.
HRV Analysis Daily, Time Domain
Author Iellamo et al. (2004)
Sport Elite Male Rowers (n=8)
Aim To test the hypothesis that training-induced variations in T-wave amplitude at higher training loads are paralleled by changes in HR spectral profile.
Main Findings From 50% to 100% of training load, there was a significant decrease in HRV and increase in sympathetic tone. As training reduced to 50% during the World Championships, HRV returned to base line and a return of autonomic indices to previous levels was seen. 
HRV Analysis Non-Daily – Frequency Domain

I’ll discuss my thoughts on the questions I listed above in my next post.

Please share any studies pertaining to HRV usage in a team setting that I may have missed in the comments below or e-mail me andrew_flatt@hotmail.com

I joined twitter recently too @andrew_flatt

References:

Cipryan, L. & Stejskal, P. (2010) Individual training in team sports based on ANS activity assessments. Medicina Sportiva, 14(2):  56-62 Free Full-Text

Cipryan, L., Stejskal, P., Bartakova, O., Botek, M., Cipryanova, H., Jakubec, A., Petr, M., & Řehova, I. (2007)  Autonomic nervous system observation through the use of spectral analysis of heart rate variability in ice hockey players.  Acta Universitatis Palackianae Olomucensis. Gymnica, 37(4): 17-21. Free Full-Text

Di Fronso, S. et al. (2012) Relationship between performance and heart rate variability in amateur basketball players during playoffs. Journal for Sports Sciences & Health, 8 (Suppl 1):S1–S70 45

Dranitsin, O. (2008) The effect on heart rate variability of acclimatization to a humid, hot environment after a transition across five time zones in elite junior rowers. European Journal of Sport Science, 8(5): 251-258 Abstract

Edmonds, RC., Sinclair, WH., and Leicht, AS. (2012) Theeffect of weekly training and a game on heart rate variability in elite youth Rugby League players. Proceedings of the 5th Exercise & Sports Science Australia Conference and 7th Sports Dietitians Australia Update. 5th Exercise & Sports Science Australia Conference and 7th Sports Dietitians Australia Update Research to Practice , 19-21 April 2012, Gold Coast, QLD, Australia , p. 183. Abstract

Hap, P., Stejskal, P. & Jakubec, A. (2010) Volleyball players training intensity monitoring through the use of spectral analysis of HRV during a training microcycle. Acta Universitatis Palackianae Olomucensis. Gymnica, 41(3): 33-38 Free Full-Text

Iellamo, F., Pigozzi, F., Spataro, A., Lucini, D., & Pagani, M. (2004) T-wave and heart rate variability changes to assess training in world class athletes. Medicine & Science in Sports and Exercise, 36(8): 1342-1346. Abstract

Ke-Tien, Y.(2012) Effects of Cardiovascular Endurance Training Periodization on Aerobic performance and Stress Modulation in Rugby Athletes. Life Science Journal, 9(2): 1218-25. Full-Text

Martin-Sanchez, F. (2011) Functional status and inflammation after preseason training program in professional and recreational soccer players: a proteomic approach. Journal of Sports Science & Medicine, 10: 45-51 Free Full-Text

Mazon, J. et al. (2011) Effects of training periodization on cardiac autonomic modulation and endogenous stress markers in volleyball players. Scandinavian Journal of Medicine & Science in Sports, doi: 10.1111/j.1600-0838.2011.01357.x Free Full-Text

Oliveira, RS. et al. (2012a) Seasonal changes in physical performance and HRV in high level futsal players. International Journal of Sports Medicine. DOI: 10.1055/s-0032-1323720 Abstract

Oliveira, RS. et al. (2012b) The correlation between heart rate variability and improvement in soccer player’s physical performance. Brazilian Journal of Kinanthropometry, 14(6) Abstract

Parrado, E.  et al. (2010)Percieved tiredness and HRV in relation to overload during a field hockey world cup. Perceptual and Motor Skills, 110(3): 699-713 Abstract

Rodas, G. et al. (2011) Changes in HRV in field hockey players during the 2006 World Cup. Apunts Medicina de l’Esport, (46): 117-123 Abstract

Vantinnen, T. et al. (2007) Practical experiences from measuring exercise intensity and recovery state with HR monitoring in team sport. Symposium Proceedings 6th IACSS Calgary, Alberta. Full-Text

 

Planning the Recovery

The inclusion of HRV monitoring into my training has caused me to change my perspective a fair bit on the subject. It has also provided me with a lot more questions than answers, but I don’t consider this to be a bad thing. My main interest and focus has always been on how to increase strength. A quick look over at my bookshelf and I can see that I have accumulated a small library on the topic. In pursuit of increasing my own strength I’ve been on an ongoing mission to discover and learn the best training methods and programs that can get me stronger. Today’s post is about the polar opposite of what I’ve been spending years of my life on learning. That is, the opposite of training. HRV monitoring has inspired me to consider not just appropriate planning of training loads, but the planning of recovery and restoration modalities – the opposite of physically stressful training.

First I’d like to assert my current position or philosophy on training; Your workouts are only as effective as the quality of your adaptation to them. This is analogous to the nutritional concept of being not necessarily what you eat, but what your body assimilates or absorbs from what you eat (I believe it was Poliquin who said that). I believe that the more advanced you get with your training, the more this statement applies. To elaborate on this concept, if you’re out-training your body’s ability to favourably respond to the stress, it doesn’t matter how perfect or scientific your program is. This is what makes monitoring something like HRV so invaluable. Understanding complex training methods and being able to apply them is simply one facet of the overall process. The recovery process also requires planning, structure and strategy.

At this point I wish I could tell you how to perfectly strategize and plan your recovery but I simply don’t know the answers. What I do know, and I’m stealing this term from Mladen Jovanovic, is that a complementary approach to training is necessary. Putting a ton of time into devising your next training cycle must involve considerations of recovery processes. This is not to say that that you must actively perform some mode of recovery at all times but rather that it would be wise to consider matching increases in training stress with a logically applied increase in recovery strategies to assist in the recovery and adaptation process.

Below is a brief list of factors I’ve been considering more when planning my training/recovery process;

(Note that the following are simply stated to provoke thought, I’m not recommending anything in particular as I’m not qualified to do so)

Sleep: Quality and length are obviously important during all phases of training. Can Inclusion of daily naps at certain times/phases be of any benefit? What about time of day training? Myllymaki and colleagues (2011) found that late night exercise resulted in higher heart rates during the first few hours of sleep compared to control however no effect on overall sleep quality or nocturnal HRV was seen. Perhaps post exercise static stretching would further reduce HR post-exercise (see below: static stretching) – You can monitor your sleep with mobile apps although I have yet to do this.

Nutrition:

–          Macronutrients, caloric intake (matched to body composition and/or weight class goals), manipulation of macronutrients according to training phase (i.e. higher volumes accompanied with higher carbohydrate intake?)

–          Micronutrition (Ensuring adequate vitamin and mineral consumption. Does this change with variations in training load?)

–          Anecdotally I can say that I almost always see an acute spike in HRV the morning after a night of purposeful overeating.

–          Ingesting foods that are anti-inflammatory? Reducing or eliminating foods that are pro-inflammatory? For a discussion on nutrition and HRV see this post.

Supplements: Inclusion of ergogenic aids at appropriate times; vitamin D over winter; supplemental forms of Zinc, Magnesium, C, etc. Rather than taking certain supplements year round would they be more effective by being cycled in at certain times?

Massage: Beneficial in periods of high loading? Massage has been show to acutely increase HRV in athletes (Arroyo-Morrales 2008) and healthy subjects (Delaney 2002). See Patrick Ward’s site for more insightful discussions on HRV and massage.

Static Stretching: I understand that static stretching is a bit of a hot topic and is widely debated. But static stretching post-workout increases HRV (Mueck-Weymann 2004, Farinatti et al. 2011) and therefore more rapidly initiates the recovery process. How much of an effect this may have on the overall process I cannot say but it’s worth considering.

Cold Water Immersion: The effect this has on recovery is debateable (see a good article by Dr. Marco Cardinale here) but it does appear to enhance parasympathetic reactivation post-exercise in athletes after supra-maximal cycling exercise (Buchheit et al 2009). The psychological effects of this shouldn’t be ignored either. Does it matter if something like this actually helps if the athletes wholeheartedly believe it does? When I played football during my undergrad the cold tubs were a MUST during training camp. None of us questioned this. If we sat in the cold tub we thought we helped our recovery. If we didn’t we would expect to be more sore the next day. Placebo effect?

Active Recovery: From personal experience I’ve seen a noticeable difference in perceived recovery, also reflected in my HRV scores with active recovery work. However, incorporating active recovery at certain periods and removing it from others may enhance its effects.

To reiterate, the above modalities may or may not be the answer to continued progress. However, their strategic planning and application throughout training may allow you to better handle the higher training loads necessary to stimulate further progress. We periodize the amount of stress we apply to our body’s, why not also periodize modalities that theoretically may enhance our ability to tolerate that stress at the appropriate times?

For the strength coaches reading this, I’d be curious to know how much thought and planning goes into this aspect of your training with your athletes. Do you have your athletes use different recovery interventions? When and why? Do you monitor this?

I am still young and relatively inexperienced compared to many of you that may be reading this. I can say that from my experience coaching strength and conditioning at the collegiate level that monitoring can be an extremely arduous task given the limited amount of time available with the athletes. Not to mention, the process of monitoring is time consuming in and of itself, making it difficult to do when you’re responsible for several teams.

Leave me a comment or send me an e-mail to continue the discussion.

andrew_flatt@hotmail.com

References:

Arroyo-Morrales, M. (2008) Effects of myofascial release after high-intensity exercise: A randomized clinical trial. Journal of Manipulative and Physiological Therapeutics, 31(3): 217-223.

Buchheit, M. (2009) Effect of cold water immersion on postexercise parasympathetic reactivation. American Journal of Physiology, 296(2): 421-427 Full-Text

Delaney, J. (2002) The short-term effects of myofascial trigger point massage therapy on cardiac autonomic tone. Journal of Advanced Nursing, 37(4): 364-371

Farinatti, P. et al (2011) Actue effects of stretching exercise on the heart rate variability in subjects with low flexibility levels. Journal of Strength and Conditioning Research, 25(6): 1579-1585

Mueck-Weymann, MG., et al (2004) Stretching increase heart rate variability in healthy athletes complaining about limited muscular flexibility. Clinical Autonomic Research, 14(1): 15-18

Myllymaki, T. et al (2011) Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. Journal of Sleep Research, 20(1): 146-153