Heart Rate Variability, Neuromuscular and Perceptual Recovery Following Resistance Training

Our latest study…

Heart Rate Variability, Neuromuscular and Perceptual Recovery Following Resistance Training

We quantified associations between changes in heart rate variability (HRV), neuromuscular and perceptual recovery following intense resistance training (RT). Adult males (n = 10) with >1 year RT experience performed six sets to failure with 90% of 10 repetition maximum in the squat, bench press, and pull-down. Changes (∆) from pre- to immediately (IP), 24 and 48 h post-RT were calculated for neuromuscular performance markers (counter-movement jump peak power and mean concentric bench press and squat velocity with load corresponding to 1.0 m∙s−1) and perceived recovery and soreness scales. Post-waking natural logarithm of the root-mean square of successive differences (LnRMSSD) in supine and standing positions were recorded pre-RT (5 day baseline), IP and two mornings post-RT. All parameters worsened at IP (p < 0.05). LnRMSSD measures were not different from baseline by 24 h. Neuromuscular markers were not different from pre-RT by 48 h. Perceptual measures remained suppressed at 48 h. No significant associations among ∆ variables were observed (p = 0.052–0.978). These data show varying timeframes of recovery for HRV, neuromuscular and perceptual markers at the group and individual level. Thus, post-RT recovery testing should be specific and the status of one metric should not be used to infer that of another.

Full-text is available here: https://www.mdpi.com/2075-4663/7/10/225

HRV Monitoring During Strength and High-Intensity Interval Training Overload Microcycles

Thanks to Christoph Schneider for inviting my collaboration on this new study from his PhD work. The full-text can be viewed here.

Heart Rate Variability Monitoring During Strength and High-Intensity Interval Training Overload Microcycles

Abstract

Objective: In two independent study arms, we determine the effects of strength training (ST) and high-intensity interval training (HIIT) overload on cardiac autonomic modulation by measuring heart rate (HR) and vagal heart rate variability (HRV).

Methods: In the study, 37 well-trained athletes (ST: 7 female, 12 male; HIIT: 9 female, 9 male) were subjected to orthostatic tests (HR and HRV recordings) each day during a 4-day baseline period, a 6-day overload microcycle, and a 4-day recovery period. Discipline-specific performance was assessed before and 1 and 4 days after training.

Results: Following ST overload, supine HR, and vagal HRV (Ln RMSSD) were clearly increased and decreased (small effects), respectively, and the standing recordings remained unchanged. In contrast, HIIT overload resulted in decreased HR and increased Ln RMSSD in the standing position (small effects), whereas supine recordings remained unaltered. During the recovery period, these responses were reversed (ST: small effects, HIIT: trivial to small effects). The correlations between changes in HR, vagal HRV measures, and performance were weak or inconsistent. At the group and individual levels, moderate to strong negative correlations were found between HR and Ln RMSSD when analyzing changes between testing days (ST: supine and standing position, HIIT: standing position) and individual time series, respectively. Use of rolling 2–4-day averages enabled more precise estimation of mean changes with smaller confidence intervals compared to single-day values of HR or Ln RMSSD. However, the use of averaged values displayed unclear effects for evaluating associations between HR, vagal HRV measures, and performance changes, and have the potential to be detrimental for classification of individual short-term responses.

Conclusion: Measures of HR and Ln RMSSD during an orthostatic test could reveal different autonomic responses following ST or HIIT which may not be discovered by supine or standing measures alone. However, these autonomic changes were not consistently related to short-term changes in performance and the use of rolling averages may alter these relationships differently on group and individual level.

 

New study: Association between Subjective Indicators of Recovery Status and Heart Rate Variability among Divison-1 Sprint-Swimmers

Our latest study investigates the relationship between subjective indicators of recovery status and HRV among NCAA Division 1 sprint-swimmers. The main findings were:

1) Perceived sleep quality showed the strongest relationship with post-waking LnRMSSD.

2) LnRMSSD demonstrated stronger associations with subjective parameters than resting heart rate.

We report both group and individual relationships. The full text is available here.

Association between Subjective Indicators of Recovery Status and Heart Rate Variability among Divison-1 Sprint-Swimmers

Abstract

Heart rate variability (HRV) is a physiological marker of training adaptation among athletes. However, HRV interpretation is challenging when assessed in isolation due to its sensitivity to various training and non-training-related factors. The purpose of this study was to determine the association between athlete-self report measures of recovery (ASRM) and HRV throughout a preparatory training period. Ultra-short natural logarithm of the root mean square of successive differences (LnRMSSD) and subjective ratings of sleep quality, fatigue, muscle soreness, stress and mood were acquired daily for 4 weeks among Division-1 sprint-swimmers (n = 17 males). ASRM were converted to z-scores and classified as average (z-score −0.5–0.5), better than average (z-score > 0.5) or worse than average (z-score < −0.5). Linear mixed models were used to evaluate differences in LnRMSSD based on ASRM classifications. LnRMSSD was higher (p < 0.05) when perceived sleep quality, fatigue, stress and mood were better than average versus worse than average. Within-subject correlations revealed that 15 of 17 subjects demonstrated at least one relationship (p < 0.05) between LnRMSSD and ASRM variables. Changes in HRV may be the result of non-training related factors and thus practitioners are encouraged to include subjective measures to facilitate targeted interventions to support training adaptations.

Figure 1 Effect Size SPORTS jpeg

Figure 1

Effect sizes ± 90% confidence interval for resting heart rate parameters relative to subjective categorization.

HRV responses to in-season training among D-1 college football players

During spring training camp, we found that Linemen demonstrate the greatest reductions in LnRMSSD at ~20 h post-training, followed by Mid-Skill and Skill, possibly reflecting inadequate cardiovascular recovery between consecutive-day sessions for the larger players, despite lower PlayerLoad values. (Full-text available here)

Our first follow-up study during the early  part of the competitive season found the same position-based trend, where Linemen demonstrated the greatest reductions in LnRMSSD at ~20 h post-training, followed by Mid-Skill and Skill. However, the magnitude of the reductions in LnRMSSD during the in-season were smaller relative to spring camp. We speculate that both reduced PlayerLoad values (15-22% lower than spring camp) and adaptation to intense preseason training in the heat and humidity during the preceding weeks account for the smaller LnRMSSD reductions observed during the early part of the competitive season. (Full-text available here)

Cardiac-Autonomic Responses to In-Season Training Among Division-1 College Football Players.

Despite having to endure a rigorous in-season training schedule, research evaluating daily physiological recovery status markers among American football players is limited. The purpose of this study was to determine if recovery of cardiac-autonomic activity to resting values occurs between consecutive-day, in-season training sessions among college football players. Subjects (n = 29) were divided into groups based on position: receivers and defensive backs (SKILL, n = 10); running backs, linebackers and tight-ends (MID-SKILL, n = 11) and linemen (LINEMEN, n = 8). Resting heart rate (RHR) and the natural logarithm of the root-mean square of successive differences multiplied by twenty (LnRMSSD) were acquired at rest in the seated position prior to Tuesday and Wednesday training sessions and repeated over three weeks during the first month of the competitive season. A position × time interaction was observed for LnRMSSD (p = 0.04), but not for RHR (p = 0.33). No differences in LnRMSSD between days was observed for SKILL (Tuesday = 82.8 ± 9.3, Wednesday = 81.9 ± 8.7, p > 0.05). Small reductions in LnRMSSD were observed for MID-SKILL (Tuesday = 79.2 ± 9.4, Wednesday = 76.2 ± 9.5, p < 0.05) and LINEMEN (Tuesday = 79.4 ± 10.5, Wednesday = 74.5 ± 11.5, p < 0.05). The individually averaged changes in LnRMSSD from Tuesday to Wednesday were related to PlayerLoad (r = 0.46, p = 0.02) and body mass (r = -0.39, p = 0.04). Cardiac-parasympathetic activity did not return to resting values for LINEMEN or MID-SKILL prior to the next training session. Larger reductions in LnRMSSD tended to occur in players with greater body mass despite having performed lower workloads, though some individual variability was observed. These findings may have implications for how coaches and support staff address training and recovery interventions for players demonstrating inadequate cardiovascular recovery between sessions.

Figure 1

 

Our next paper, currently in production, will feature HRV responses among positions throughout the entire preparatory and competitive season.

HRV and Training Load Among NCAA D-1 Football Players Throughout Spring Camp

For our first study with football, we wanted to determine if cardiovascular recovery from training varied among positional groups (i.e., Skill, Mid-Skill and Linemen). We also looked at some longitudinal relationships between cardiac-autonomic and training load parameters throughout spring camp.

We found that Linemen take longer to recover between training sessions than the other positions. This may have important implications for the competitive season because despite differences in recovery time among positional groups, football teams train on a fixed schedule. This may make Linemen more susceptible to developing signs and symptoms of overtraining, getting hurt or sick, etc. Fortunately, we captured data from the competitive season, too. That paper is forthcoming.

The purpose of this study was to determine whether recovery of cardiac-autonomic activity to baseline occurs between consecutive-day training sessions among positional groups of a collegiate football team during Spring camp. A secondary aim was to evaluate relationships between chronic (i.e., 4-week) heart rate variability (HRV) and training load parameters. Baseline HRV (lnRMSSD_BL) was compared with HRV after ∼20 hours of recovery before next-day training (lnRMSSDpost20) among positional groups composed of SKILL (n = 11), MID-SKILL (n = 9), and LINEMEN (n = 5) with a linear mixed model and effect sizes (ES). Pearson and partial correlations were used to quantify relationships between chronic mean and coefficient of variation (CV) of lnRMSSD (lnRMSSD_chronic and lnRMSSDcv, respectively) with the mean and CV of PlayerLoad (PL_chronic and PL_cv, respectively). A position × time interaction was observed for lnRMSSD (p = 0.01). lnRMSSD_BL was higher than lnRMSSDpost20 for LINEMEN (p < 0.01; ES = large), whereas differences for SKILL and MID-SKILL were not statistically different (p > 0.05). Players with greater body mass experienced larger reductions in lnRMSSD (r = -0.62, p < 0.01). Longitudinally, lnRMSSDcv was significantly related to body mass (r = 0.48) and PL_chronic (r = -0.60). After adjusting for body mass, lnRMSSDcv and PL_chronic remained significantly related (r = -0.43). The ∼20-hour recovery time between training sessions on consecutive days may not be adequate for restoration of cardiac-parasympathetic activity to baseline among LINEMEN. Players with a lower chronic training load throughout camp experienced greater fluctuation in lnRMSSD (i.e., lnRMSSDcv) and vice versa. Thus, a capacity for greater chronic workloads may be protective against perturbations in cardiac-autonomic homeostasis among American college football players.
LnRMSSD Spring Camp Football
Full-text on RG Link

Planning the Recovery

The inclusion of HRV monitoring into my training has caused me to change my perspective a fair bit on the subject. It has also provided me with a lot more questions than answers, but I don’t consider this to be a bad thing. My main interest and focus has always been on how to increase strength. A quick look over at my bookshelf and I can see that I have accumulated a small library on the topic. In pursuit of increasing my own strength I’ve been on an ongoing mission to discover and learn the best training methods and programs that can get me stronger. Today’s post is about the polar opposite of what I’ve been spending years of my life on learning. That is, the opposite of training. HRV monitoring has inspired me to consider not just appropriate planning of training loads, but the planning of recovery and restoration modalities – the opposite of physically stressful training.

First I’d like to assert my current position or philosophy on training; Your workouts are only as effective as the quality of your adaptation to them. This is analogous to the nutritional concept of being not necessarily what you eat, but what your body assimilates or absorbs from what you eat (I believe it was Poliquin who said that). I believe that the more advanced you get with your training, the more this statement applies. To elaborate on this concept, if you’re out-training your body’s ability to favourably respond to the stress, it doesn’t matter how perfect or scientific your program is. This is what makes monitoring something like HRV so invaluable. Understanding complex training methods and being able to apply them is simply one facet of the overall process. The recovery process also requires planning, structure and strategy.

At this point I wish I could tell you how to perfectly strategize and plan your recovery but I simply don’t know the answers. What I do know, and I’m stealing this term from Mladen Jovanovic, is that a complementary approach to training is necessary. Putting a ton of time into devising your next training cycle must involve considerations of recovery processes. This is not to say that that you must actively perform some mode of recovery at all times but rather that it would be wise to consider matching increases in training stress with a logically applied increase in recovery strategies to assist in the recovery and adaptation process.

Below is a brief list of factors I’ve been considering more when planning my training/recovery process;

(Note that the following are simply stated to provoke thought, I’m not recommending anything in particular as I’m not qualified to do so)

Sleep: Quality and length are obviously important during all phases of training. Can Inclusion of daily naps at certain times/phases be of any benefit? What about time of day training? Myllymaki and colleagues (2011) found that late night exercise resulted in higher heart rates during the first few hours of sleep compared to control however no effect on overall sleep quality or nocturnal HRV was seen. Perhaps post exercise static stretching would further reduce HR post-exercise (see below: static stretching) – You can monitor your sleep with mobile apps although I have yet to do this.

Nutrition:

–          Macronutrients, caloric intake (matched to body composition and/or weight class goals), manipulation of macronutrients according to training phase (i.e. higher volumes accompanied with higher carbohydrate intake?)

–          Micronutrition (Ensuring adequate vitamin and mineral consumption. Does this change with variations in training load?)

–          Anecdotally I can say that I almost always see an acute spike in HRV the morning after a night of purposeful overeating.

–          Ingesting foods that are anti-inflammatory? Reducing or eliminating foods that are pro-inflammatory? For a discussion on nutrition and HRV see this post.

Supplements: Inclusion of ergogenic aids at appropriate times; vitamin D over winter; supplemental forms of Zinc, Magnesium, C, etc. Rather than taking certain supplements year round would they be more effective by being cycled in at certain times?

Massage: Beneficial in periods of high loading? Massage has been show to acutely increase HRV in athletes (Arroyo-Morrales 2008) and healthy subjects (Delaney 2002). See Patrick Ward’s site for more insightful discussions on HRV and massage.

Static Stretching: I understand that static stretching is a bit of a hot topic and is widely debated. But static stretching post-workout increases HRV (Mueck-Weymann 2004, Farinatti et al. 2011) and therefore more rapidly initiates the recovery process. How much of an effect this may have on the overall process I cannot say but it’s worth considering.

Cold Water Immersion: The effect this has on recovery is debateable (see a good article by Dr. Marco Cardinale here) but it does appear to enhance parasympathetic reactivation post-exercise in athletes after supra-maximal cycling exercise (Buchheit et al 2009). The psychological effects of this shouldn’t be ignored either. Does it matter if something like this actually helps if the athletes wholeheartedly believe it does? When I played football during my undergrad the cold tubs were a MUST during training camp. None of us questioned this. If we sat in the cold tub we thought we helped our recovery. If we didn’t we would expect to be more sore the next day. Placebo effect?

Active Recovery: From personal experience I’ve seen a noticeable difference in perceived recovery, also reflected in my HRV scores with active recovery work. However, incorporating active recovery at certain periods and removing it from others may enhance its effects.

To reiterate, the above modalities may or may not be the answer to continued progress. However, their strategic planning and application throughout training may allow you to better handle the higher training loads necessary to stimulate further progress. We periodize the amount of stress we apply to our body’s, why not also periodize modalities that theoretically may enhance our ability to tolerate that stress at the appropriate times?

For the strength coaches reading this, I’d be curious to know how much thought and planning goes into this aspect of your training with your athletes. Do you have your athletes use different recovery interventions? When and why? Do you monitor this?

I am still young and relatively inexperienced compared to many of you that may be reading this. I can say that from my experience coaching strength and conditioning at the collegiate level that monitoring can be an extremely arduous task given the limited amount of time available with the athletes. Not to mention, the process of monitoring is time consuming in and of itself, making it difficult to do when you’re responsible for several teams.

Leave me a comment or send me an e-mail to continue the discussion.

andrew_flatt@hotmail.com

References:

Arroyo-Morrales, M. (2008) Effects of myofascial release after high-intensity exercise: A randomized clinical trial. Journal of Manipulative and Physiological Therapeutics, 31(3): 217-223.

Buchheit, M. (2009) Effect of cold water immersion on postexercise parasympathetic reactivation. American Journal of Physiology, 296(2): 421-427 Full-Text

Delaney, J. (2002) The short-term effects of myofascial trigger point massage therapy on cardiac autonomic tone. Journal of Advanced Nursing, 37(4): 364-371

Farinatti, P. et al (2011) Actue effects of stretching exercise on the heart rate variability in subjects with low flexibility levels. Journal of Strength and Conditioning Research, 25(6): 1579-1585

Mueck-Weymann, MG., et al (2004) Stretching increase heart rate variability in healthy athletes complaining about limited muscular flexibility. Clinical Autonomic Research, 14(1): 15-18

Myllymaki, T. et al (2011) Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. Journal of Sleep Research, 20(1): 146-153

How to increase HRV Part 3: Aerobic Exercise

As the title implies, this is the third installment to a series I started several months ago that discusses the various factors that can help improve our HRV. The first two posts can be read by clicking on the respective links below.

How to increase HRV Part 1: Inflammation

How to increase HRV Part 2: Nutrition – Featuring contributions from my friend Marc Morris PhD(c)

I will first discuss (very briefly) some research and the key physiological adaptations that occur in response to aerobic exercise as it is these changes that ultimately affect the function of the autonomic nervous system (ANS). I will then provide some thoughts on how to include aerobic work into your training in effort to improve our overall health, recovery and capacity for training. Like always, I will include some anecdotal experience and a bit of theory. This article is primarily directed at strength athletes/individuals.

It’s important to clarify what exactly I’m referring to when I saw “aerobic exercise”. For the purpose of this article “aerobic exercise” is referring to some form of activity that maintains an elevated heart rate above resting conditions. This is a very broad and vague definition but for good reason. Depending on one’s current physical condition, aerobic work may be simply going for a walk, while in very fit individuals aerobic work may include longer distance running, swimming, cycling, etc. It can be tempo runs, circuit training, sled work, mobility drills or dancing if that’s your thing.

Aerobic Exercise as a Means to Increase HRV Among Various Populations  

Children (age 6-11) who initially had low HRV scores saw significant increases in HRV after participating in a 12-month moderate exercise program (Nagai, 2004).

Elderly sedentary folks (men and women between 65-75 years old) saw an increase in HRV and cognitive test scores after 12 weeks of aerobic exercise (1hr/day, 3d/wk) compared to a group who performed only stretching (1hr/day, 3d/wk) of which saw a decrease in cognitive test scores (Albinet et al, 2010).

After 6 months of aerobic exercise training, both older (age 60-82) and younger men (age 24-32) showed an increase in HRV (Levy et al, 2004)

Gamelin et al (2007) put healthy young men (untrained, age 21) through 12 weeks of aerobic training followed by 8 weeks of detraining to determine its effect on HRV. An improvement in HRV was seen after the 12 weeks however HRV scores returned to pre-test levels after only 2 weeks of training cessation. “Twelve weeks of aerobic training are sufficient to achieve substantial changes in Heart Rate Variability; and only two weeks of detraining completely reverse these adaptations.”

I should mention that there are several studies that showed no improvements in HRV following exercise intervention. It appears that there is a threshold of exercise intensity required to augment vagally mediated HRV. Essentially, it’s important for heart rate to remain elevated beyond a certain level for a certain amount of time performed consistently over a certain time period for noticeable HRV changes to be seen. I realize that last sentence didn’t help anyone but I don’t believe this threshold level has been clearly established. My interpretation of the research that I’ve seen is that you simply need to be consistent and put more effort into it than a leisurely walk, although that may be a good start for some. Older people generally require longer exercise interventions as sympathetic activity increases with age.

Anecdotally, I can say that when I incorporate regular active recovery workouts (moderate aerobic intensity) my baseline HRV score is higher and I see quicker and higher spikes in HRV following an active recovery day. Furthermore, I almost always see decreasing baseline HRV trends when I do not include active recovery work. I can definitely see the corresponding relationship between HRV and aerobic work capacity. When my aerobic capacity is high my HRV is typically higher (baseline level). With consistent downward trends in HRV I’m typically detraining (due to illness, high stress, or anything that results in lack of training). Thus, at least in myself, when my aerobic capacity is higher, my HRV is typically higher.

* Note that this does not include acute changes in HRV but rather weekly/monthly trend changes.

Physiological Adaptations

Without trying to sound like an Ex. Phys text book I simply want to touch on some key adaptations that take place in response to aerobic exercise that influence ANS activity and therefore HRV changes. In response to aerobic exercise we will typically see that;

–          Resting heart rate decreases

–          Cardiac output increases

–          Heart volume and size increases (Left Ventricle)

–          Red blood cell size and count increases

–          Capillary density increases

–          Myoglobin increases

–          Breathing rate decreases

–          Blood pressure decreases

–          Baroreflex sensitivity increases

–          Renal-Adrenal function increases

–          Parasympathetic tone increases

–          Sympathetic tone decreases

*I used both the NSCA Essentials of Strength Training and Conditioning text and Primer on the Autonomic Nervous System Text for the above information.

I’m reluctant to say that all of the above directly affect HRV. The primary factors from the above list that impact HRV the most would be the changes in Sympathetic and Parasympathetic tone.

The ANS is responsible for responding to a stimulus/stressor and creating the necessary adaptations to allow us to resist the same stimulus/stressor in future incidences. Therefore, regardless of what type of athlete you are, improving your overall capacity for stress is beneficial. Our performance can be limited by our capacity for work. HRV score is a reflection of how much stress you can handle that day. Therefore we want to do what we can to position ourselves to better tolerate and adapt to our training.

Aerobic Work for Anaerobic Athletes

Let me be clear and state that I’m not advising powerlifters or throwers to go for a 1 hour run 3-4x/wk. However, in the interest of increasing workout volume/density and recovery, some aerobic capacity work can be helpful. Louie Simmons and Dave Tate have been preaching this for years. I recall plenty of articles where they discuss sled dragging, “feeder” workouts, etc. You can call this a “base” or “GPP”, “Anatomic Adaptation” or whatever you want. The bottom line is, we need to increase our body’s ability to handle training stress, recovery from it, then handle progressively more training again.

I understand that resistance training can elevate heart rate and maintain it over resting conditions. However, can you honestly tell me that you can go play a pick- game of basketball and not be completely winded after 5 mins? I used to not perform active recovery/work capacity workouts. If I did anything even somewhat strenuous for over 20 minutes that day my workout would be ruined. I’d purposely avoid physical activity so that I wouldn’t compromise my workout. Now that my work capacity is much higher I no longer have this issue.

Here are some thoughts on how to incorporate some aerobic capacity work into your training without negatively effecting strength progress;

–          If it’s possible, take longer in your warm-ups. Here’s an example of a warm-up I do on Squat and DL days;

  • 6 min aerobic exercise (incline treadmill, bike, skipping, etc), 5 min dynamic stretches, 5 min lower body mobility, 5 min “activation” type work for glutes and core (due to previous low back issues), 5 min upper body mobility (shoulders, t-spine) and external rotation work, some form of box jump or KB swing to finish. By the end of this I’m sweating and my joints feel great.

–          Perform some type of activity on your off days. If you have terrible work capacity start off extremely easy with 10 mins of incline treadmill walking or the stationary bike. Over time work up to 20-30 mins. Generally I don’t exceed 40 minutes of work.

–          Perform mobility circuits and kill two birds with one stone. Improve your mobility and aerobic capacity at the same time. Just keep your HR elevated.

–          Perform low intensity sled work (various drags)

–          Perform circuits of body weight exercise (Blast Strap/TRX stuff, single leg work, etc.)

–          Complexes with BB’s, DB’s or KB’s.

Keep in mind that the goal is to facilitate recovery while at the same time gradually increasing work capacity. Therefore, do not perform 20 sets of hill sprints or maximal effort complexes on day 1 if you plan on moving any kind of decent weight that week. The goal is to;

  • Maintain an elevated heart rate
  • Enhance blood flow to sore muscles

What about intervals?

Yes, interval work can provide much of the benefits that aerobic exercise has to offer. However, intervals are much more stressful and taxing. Interval work can be better tolerated after a sufficient level of work capacity has been established. If you’re not concerned with strength levels than by all means proceed with intervals. However keep in mind that conditioning work with intervals is not necessarily facilitating recovery and will likely result in a lower HRV score the following day. Assess your situation and goals and make an appropriate decision.

If you progress your work capacity properly you shouldn’t see any negative effect on your strength levels. This isn’t about “concurrent” training were we want to build endurance and strength at the same time. It’s more about keeping strength the priority and gradually building work capacity at an intensity low enough that it doesn’t contribute to overall stress but rather facilitates recovery from it. This is how I prefer to do it.

Approaching this with athletes in a team setting is a different animal and I will hopefully share my thoughts on that another time as this article is already longer than I wanted it to be.

Summary:

–          Aerobic exercise will typically increase HRV, better HRV results in more favourable responses to training

–          Aerobic exercise can be anything that maintains an elevated HR

–          Strength athletes can benefit from increased work capacity

–          Progress from very low stress active recovery work to higher levels over time

–          Use these workouts to facilitate recovery, improve mobility, enhance blood flow and maybe do the stuff you need to do that you can’t get to during your main lifts

If you have anything to add, refute, share, etc. I’d love to hear it. Comment below or email me andrew_flatt@hotmail.com.

I joined Twitter recently so we can interact there too @andrew_flatt.

References

Albinet, C. A., Boucard, G., Bouquet, C. A., & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology. 109(4):617-24

Gamelin, et al. (2007) Effect of training and detraining on HRV in healthy young men. International Journal of Sports Medicine, 28(7): 564-70

Levy, WC., et al. (2004) Effect of endurance exercise training on HRV at rest in healthy young and older men. American Journal of Cardiology, 82(10): 1236-41

Nagai, N., et al (2004) Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability. Journal of the International Society of Pediatric Neurosurgery, 20(4): 209-14

Illness, recovery time, travel stress, monitoring, etc.

I think many would agree that the biggest obstacle in making continued training progress is experiencing illness or injury. This assumes of course that the programming is appropriate and progressive in nature for the individual. Therefore, monitoring training status is essential to appropriately manipulate training loads in effort to; a) maximize progress and b) avoid set backs. This gives you much more control over the process of training and in many cases can potentially allow you to avoid illness, injury, overtraining etc.

Unfortunately sometimes, illness or injury happens despite careful monitoring. However, it’s how you handle these unfortunate situations with proper training loads that can make a huge difference in continuing where you left off before the incident, or seeing massive performance decrements that take much longer to recover from. I have experienced both situations. I’ve fallen ill and seen my strength plummet for quite some time after the illness. This was most likely from insufficient recovery from before I resumed intense training again, lifting too heavy, too soon. More recently however, I handled illness much more appropriately and have been able to continue from where I left off without suffering significant performance decrements.

ILLNESS

My nephew Kevin and I at the park


When I was visiting some family in Cincinnati this spring I was very excited to see my twin nephews. I hadn’t seen them in over a year since they were born. A few days before they arrived in Cincinnati (coming from New Hampshire) they contracted hand, foot and mouth disease. My sister warned us that it was contagious for anyone who has never had it before. I wasn’t too concerend and we all wanted to see the twins even if it meant getting a little sick. Well, long story short I picked up the virus and it destroyed me. If you’ve ever had this as an adult you know how awful this can be.

My nephew Ethan and I on the back porch

In my chart below you can see a distinct disruption in my HRV trend occuring when I experienced the first symptoms of the illness. On June 9th I woke up with a resting heart rate of 108bpm and an HRV score of 42.9! I had a terrible sleep that night and had a high fever that morning. The fever persisted for about 72 hours at which point I assumed the worst was over. I saw my HRV start to climb back up a bit, however at this point some new symptoms appeared and my HRV again dropped. As you can see in the chart, I didn’t train (the vertical purple bars represent training load). Once all of my symptoms subsided and HRV returned to previous baseline levels I resumed training at very moderate loads (session RPE of 7).

You’ll notice that these moderate loads were apparently very stressful on my body reflected by large HRV fluctuations. Typically a workout rated as a 7 is a deload workout for me. Being able to see my body’s responsiveness to these moderate loads showed me that although my symptoms were gone, my body was still trying to overcome the illness. In the past I likely would’ve resumed intense training once symptoms subsided, however by monitoring HRV, I was able to hold off on more intense loading until my body was capable of handling it sufficiently. You can see that it was nearly 3 weeks until I performed a more intense workout (sRPE 8). I can happily say that althought there was some minor strength loss (bound to happen after nearly 3 weeks of 0-moderate training loads), I was able to gain it all back very quickly unlike previous instances.

Purple Vertical Bars = Training Load
Horizontal Blue Wavy Line = HRV Baseline
Horizontal White Line = Day to Day HRV Fluctuations

Travel/Moving Stress

In the image above on the right hand side of the chart, you will see about a week’s worth of low HRV scores indicated by red and amber deflections. This was the week that I moved from grad school (I completed my Masters) back to Toronto. Clearly this was a very stressful week settling into a new place and dealing with all of the typical issues associated with a move. After appropriately manipulating my training loads (reducing them) I was able to maintain strength and see a return to baseline once I felt settled in. In the past after my first day of being back I likely would’ve continued with intense training. As you can see, this likely would’ve been detrimental to my progress.

Take Home Messages

First and foremost, have an effective monitoring strategy with yourself/athletes. Without one, it’s nearly impossible to make critical manipulations in training load to avoid running into problems. I’m obviously a proponent of HRV and recommend you track yours. Once you have your monitoring in place, have the discipline to reduce loads when you know you should. Sometimes you may not even perceive yourself as being under significant stress, however this is often how people end up hitting a wall with their training. You can’t necessarily ‘feel’ if your adaptive capacity is high or low. In previous posts I showed what happens when you train hard with low HRV. You simply delay recovery and potentially hurt progress.

Think outside the box a little. Training hard for 3 weeks and deloading on the 4th week is pretty standard and for the most part effective. However, just because your program tells you it’s week 3 and therefore you need to train heavy, doesn’t actually meant you HAVE to. I used to do this and thought that if I missed a workout or didn’t hit my goals that day, that I wouldn’t make progress. I’ve learned that the opposite is actually the case.

Lastly, have a plan in place for when certain events occur such as moving or illness. Have a strategy for how you will deal with it (hopefully in response to your monitoring data). This should help you maintain training progress better by allowing your body the appropriate time to recover while imposing loads that remain within your body’s ability to adapt.