HRV in a Team Setting

Monitoring athletes throughout training provides coaches with extremely valuable information regarding each athlete’s responsiveness to imposed training loads. Most would agree that the main objective for any coach (at competitive levels) is to win. If you fail to do this you will likely be fired.

I think we can also agree that bringing our athletes to peak physical condition (as it applies to their sport) will increase our chances of winning. To do this effectively, physical preparation in both team practice and S&C must be balanced. The right balance of training loads will yield optimal adaptation.

Adaptation is Key

Training (technical and physical) is a stressor our athletes must recover from. If the stress is too great, adaptation will be compromised. If the stress is insufficient, improvements will not take place. Therefore, the training stimulus must be within our athlete’s ability to adapt, allowing for performance improvements. This is pretty well understood by most coaches. However, the ability to balance loads effectively is much less understood. Too often coaches rely on pre-planned training regime’s that fail to take into account each athletes individual adaptive capacity. It is the coach’s responsibility to critically evaluate several issues that arise throughout the year such as;

  • Why did an athlete get hurt?
  • Why did an athlete fall ill?
  • Why is the team seeing decrements in performance?
  • Why are we not performing to our abilities throughout the entire match?
  • Why are certain athletes improving while others are regressing?

I’m sure you can think of more questions to consider.

Monitoring HRV in Sports Teams

Hap, Stejskal & Jakubec (2010) set out to monitor the HRV of 8 competitive male volley ball players (approximately 18-25 years old) over a 7 day microcycle during training camp. The 7 day camp had the athletes partake in 11-13 volleyball practices and 14-16 conditioning sessions. The training was entirely pre-planned and HRV scores were not shared with players or coaches. HRV was measured once each day for a total of 7 times (6 measurements were performed in the morning immediately after waking and 1 measurement was performed under controlled conditions in the afternoon).

The results showed 2 athletes demonstrated above average ANS activity (high HRV) throughout the entire week. In these athletes, the load was below training capacity and higher training levels could have been tolerated to further increase performance. In 4 athletes, HRV scores decreased to the lower end of average. This indicates a moderate level of fatigue and that training load corresponded to their training capacities. In the last 2 athletes, HRV scores were negative (below average). Training stress was too high in these individuals and reduced loads and recovery/regeneration modalities would’ve increased the quality of their training.

In this instance, the pre-planned training program was appropriate for 50% of the team. 25% were overtrained and 25% were undertrained.

In another study, Cipryan & Stejskal (2010) decided to monitor the HRV of competitive hockey players. There were 18 subjects, 8 were junior level players (18 years old) and 10 were from the adult team (mid-20’s). Both teams underwent their own training and practice programs. HRV was measured twice per week in the morning (Mon and Fri) throughout the 2 month training program.

The results show that from the junior team, 2 players showed above average adaptation capacity. 1 player showed decreased HRV scores indicating high fatigue. Training was appropriate for 5/8 players. In the adult men’s team, 3 players showed higher HRV suggesting that more (volume or intensity) training would’ve been tolerated. 1 player showed decreased HRV. This player could not see an increase in HRV back to baseline levels because the training did not conform to his adaptive abilities. This player was at risk of more frequent health complications. This training program was appropriate for 60% of the team. 30% was undertrained and 10% was overtrained.

In the discussion, the authors proposed that athletes be separated into groups during training with 3 separate programs available. One program for athletes with low HRV (decreased loads) one program from athletes responding appropriately (moderate loads) and one program for athletes with high HRV (increased loads).

The last study that I’ll discuss has been mentioned before in previous articles that I’ve written. Cipryan et al. (2007) measured HRV in Czech U-17 male hockey players once per week in the morning over a 3-5 month period. In addition, the coaches were asked to rate each players performance on a scale of 1-10. The researchers found that as HRV increased, performance was rated better and correlated to more playing time. When HRV was low performance was rated lower. Performance correlated with HRV score.

Thoughts

What I found interesting was that in 2 of the above studies, HRV was monitored only once or twice per week and was still able to provide important data regarding training status. This makes the application of HRV in a team setting much more realistic. Daily measurements can certainly be done and would likely provide more accurate data but can prove to be difficult. The ability to perform HRV measurements are limited by; having access to valid and reliable measuring devices; having a qualified individual(s) to record and analyze data; having athletes capable of following measurement instructions. HRV applications on smart phones certainly would make this process much easier. These are much more cost effective and convenient.

It appears that pre-planned training certainly isn’t optimal for realizing athletic potential in athletes. Though this is very inconvenient for the coach, having the ability to adjust training prescription for certain athletes based on HRV can increase the quality of training and adaptation while decreasing health complications (illness, injury, overtraining).

How often do coaches punish players for poor performance with intense conditioning in practice sessions following a previous competition? How many coaches punish teams with physical conditioning due to team rule infractions? How often are ill or injured players returning to training and competition before they’re ready? Clearly these strategies require some re-evaluation. It is quite possible your training program, no matter how good it looks on paper, is only appropriate for 50-60% of your players.


References

Cipryan, L. & Stejskal, P. (2010) Individual training in team sports based on ANS activity assessments. Medicina Sportiva, 14(2):  56-62

Cipryan, L., Stejskal, P., Bartakova, O., Botek, M., Cipryanova, H., Jakubec, A., Petr, M., & Řehova, I. (2007)  Autonomic nervous system observation through the use of spectral analysis of heart rate variability in ice hockey players.  Acta Universitatis Palackianae Olomucensis. Gymnica, 37(4): 17-21.

Hap, P., Stejskal, P. & Jakubec, A. (2010) Volleyball players training intensity monitoring through the use of spectral analysis of HRV during a training microcycle. Acta Universitatis Palackianae Olomucensis. Gymnica, 41(3): 33-38

HRV response to perceived training load – Observations from 2.5 months of data

About two months ago the new version of iThlete was released with some really cool new features. These new features included;

  • The ability to rate your sleep on a score of 1-5
  • A comment section that allows you to make notes about the previous day’s events, stressors, etc.
  • The ability to input training loads that appear on your HRV trend chart so you can see how your HRV responds to your training
  • The ability to export data to drop box

Here is a video that shows the updated features;

The most significant addition in my opinion is the ability to track your training loads with your HRV trend. This really puts into perspective how stressful your workouts are. There is no specific method or formula that you have to use for your training load data. There are several methods that have been used in research to quantify training load, some of which I’ll describe below.

Training Impulse (TRIMP) – this is calculated using training duration, maximal heart rate, resting heart rate and average heart rate during the session

Session Rating of Perceived Exertion (RPE) for Endurance Athletes – Session RPE score x duration of exercise in minutes (for endurance training)

Session Rating of Perceived Exertion (RPE) for Strength/Power Athletes – Session RPE score x repetitions

*See Borrensen & Lambert (2009) for a more elaborate review and explanation of the above methods.

       Training Volume – Weight Used x Sets x Reps

Other methods exist, but these tend to be the most commonly used. In deciding how I would monitor my training I simply decided to use an RPE of the session, however, not like the method listed above. Instead, I simply rated my workout on a scale of 1-10 based on how hard, or how much effort I put into the session. I would consider volume, strain, RPE of my main sets, how hard I pushed my assistance work and so forth. I realize this isn’t the most valid or reliable measure of training load, but it’s been working well for me.

To give you an idea of how I grade my workouts, see below. This will make interpreting the charts I attach below of my trends much easier.

Session RPE of 10 – 3 or more top sets for my main exercise, RPE of 9-10 for each set, high volume of assistance work (3+ sets to failure), complete exhaustion by workouts end. I have yet to perform a 10 workout and likely never will.

Session RPE of 9 – 2-3 top sets for my main exercise, RPE of 8-10 for each set, moderate volume of assistance work (2-3 sets not to failure), considerable fatigue at end but not exhaustion.

  • I’ll typically perform these workouts when HRV is above baseline

Session RPE of 8 – 1-2 top sets for my main exercise, RPE of 8-9 for each set, low to moderate volume of assistance work (1-3 sets not to failure), moderate fatigue at end

  • I’ll typically perform these workouts when HRV is at the lower end of baseline

Session RPE of 7 – 1 top set for main exercise with an RPE of 8 or less, low volume of assistance work with reduced weight, minimal fatigue at end.

  • I’ll perform this workout when HRV is below baseline with an amber indication (deload)

Session RPE of 5 – No main exercise performed, light weight, moderate volume

  • This is what I’ve been doing on Sunday’s to hit delts and arm’s since I don’t do much work for them during my main sessions on Mon-Wed-Fri

Session RPE of 3 – Active recovery work for 20-40 minutes. This can be in the form of light jogging, sled dragging, circuits, etc.

  • I try and perform these workouts the day after each workout to facilitate recovery and maintain an aerobic base level of conditioning

Session RPE of 1 – Leisurely walk for 30-40 minutes. This can hardly be described as a workout but it’s more than a zero so I will log it when it happens.

  • This happens sometimes instead of an active recovery session.. usually when I’m visiting my folks as we’ll take a lot of walks.

So as you can see there is no sexy formula (I’ve never been a math guy anyway), but I’m pretty consistent and I’ve noticed some fairly common trends in my recovery (based on HRV). Below I have attached a couple screen shots of my HRV Trends with Training Load (Session RPE ala Andrew Flatt). The purple bars reflect training load (9 being the highest you’ll see) while the horizontal trend is my HRV daily fluctuations with the blue line representing my baseline.

Observations:

  • See here and here for previous posts about observations I’ve made from monitoring my HRV
  • A session rated as 9 is almost always going to cause a pronounced drop in HRV the following day. This is why I don’t typically train on consecutive days.
  • If circumstance causes me to train two days in a row, I’ll use a Session RPE of 8. My HRV will usually drop moderately after the first workout out and drop even more after the second one.
  • During the passed 2.5 months I experienced approximately 16 instances where my HRV dropped enough causing an amber or red indication. The majority of these occurred the day after a session and therefore fell on a recovery day.
  • There were 5 days in which a red or amber indication fell on a training day and therefore out of the 2.5 months, I only deloaded for a total of 5 days. In the past I would typically take a week off after every 3 week cycle however with my new system of training I simply deload on a given day when my HRV is well below baseline.
  • The lowest dip on the graph (around 04/20) I purposefully trained harder than normal on a below baseline day (amber indication) to see how my body would react. The next day my HRV dropped even lower with a red indication. This, as well as other incidences from the past solidifies my stance that training hard when HRV is low delays recovery. You’ll see that it takes several days until my HRV gets back up to previous levels. This negatively effects future training sessions. In my opinion, it’s much better to reduce loads for one day to improve the effect of your following sessions as opposed to just training through a bad day and ruining the next few sessions. This is also what has inspired me to stop deloading at pre-determined times for pre-determined periods. There certainly is value in doing this as the body needs time to recover and adapt to weeks of hard training. However, with HRV monitoring, it seems (atleast to me, for right now) that you can get away with just reducing loads on days when HRV is low.
  • I’m presently the leanest I’ve ever been at my current body weight. I’m about 232lbs at 17%. The leanest I’ve ever been is 14.8% at 218 while the heaviest I’ve ever been was nearly 270lbs when I played collegiate football (I’m the ogre in purple below from back in 2006).

  • I’m presently the strongest I’ve ever been at this body weight.
  • I’ve been able to remain injury and illness free since using HRV to guide my training. I no longer experience any tendonitis in my elbows either which used to be a big problem.

Final Thoughts:

I realize that I may appear overly biased towards HRV’s usefulness in my writing. However, I feel that I’ve been training long enough to know when something’s all in my head (placebo) or when it’s actually making a difference. The science supports HRV (see here) and my experience up to and including the present also seems to support it. The whole concept of planning training in advance and sticking to it no matter what is not as effective as manipulating training on a day to day basis according to an objective measure of your body’s current adaptive capacity. This doesn’t mean you can’t have a general plan, it just means that you need to be prepared to make adjustments along the way to ensure the quickest and safest way to reach your training goal. HRV provides, in my opinion, the simplest and most accurate information to allow you to do this. I will continue with this method of monitoring and training since it has been so successful. I’ll be sure to provide another update in a few months.

Thanks for reading.

HRV for the recreational athlete and average person

Many of the people that I speak with about HRV lately are non-competitive athletes. They are however recreational weightlifters/runners who still take their training seriously (as they should!). Others include typical mom’s and dad’s who work and raise children, as well as other individuals just trying to get by. The purpose of this post is to explain why these individuals can still benefit a great deal from monitoring their HRV.

So why might the average person want to monitor their HRV?

First and foremost, HRV provides a very simple to use and inexpensive measure of the stress your body is currently experiencing. I’m going to use an analogy I learned from Joel Jamieson at the Central Virginia Sports Performance Seminar, that does a really good job of explaining this better.

Think of your current ability to handle stress as a bank account. Every time you take money out of your account (experience stress), you are reducing your overall balance of money (ability to handle more stress). Provided you always replace that money that you’ve withdrawn by depositing money back into the account (allowing for sufficient rest), your balance will remain steady. Now, if you withdraw too much money (experience too much stress) you can eventually go into debt (poor health). It will take much longer now to replace the money you’ve spent (return to good health) and lots of problems will start to arise. This is a position you obviously don’t want to be in.

So HRV is your ‘bank account’. Every time you experience stress (training, money problems, emotional stuff, etc) your HRV will reflect this by declining. When your HRV is below baseline levels, your ability to handle further stress is reduced. If you get enough rest, eat quality foods and so forth, you’re essentially putting money back in the bank. If you fail to do this, and continue to experience various forms of stress, you will start to experience breakdown. This can be in the form of suppressed immune system function, injury, weight loss (not the good kind), weight gain (not the good kind), low libido etc. There’s a good chance that many of you reading this are “in debt” due to the stressful nature of work, raising a family, paying bills, lack of sleep, poor nutrition, etc. Though you may not realize it, you may even be experiencing symptoms of this excess stress. Stress is typically the root that manifests itself into various forms of illness and disease when not controlled. I highly recommend checking out this book by Dr. Sapolsky titled “Why Zebras Don’t Get Ulcers” for a much more thorough explanation of the detrimental and deleterious effects of stress.

Think of your HRV score as a reflection of your current health. If you notice HRV declining over time, then your health is likely deteriorating. Think about those times when you’ve felt completely run down, gotten sick, and your training sucked. HRV monitoring can help you avoid these situations.

How can it do this? Simple really, when your HRV is low (and doesn’t seem to come back up after a few days) you need to purposefully reduce your stress. Cut back on the training, improve your nutrition, get some extra sleep, etc. Anything that you perceive as relaxing or rejuvenating will likely improve your HRV. This can be massage, a bath, yoga, etc. Once HRV has returned to baseline, ramp the training back up and get back to it. This will prevent you from overdoing it until it’s too late and you get hurt or sick.

Let me provide some real life examples that might hit home a little with you. Have you ever gone out for a run intending on doing a certain distance only to find that you’re struggling to make it half way? Perhaps your ankle is bothering you a little or you just can’t get a good rhythm?

Or for those that resistance train, how many times have you shown up at the gym intending on bench pressing a certain amount of weight only to find that your warm up sets feel like a million pounds?

I see and hear about this all of the time. I used to experience it too. However, by using HRV to plan and organize my training, I have entirely eliminated running into this problem. This is because I can typically predict when these types of days will happen based on my HRV score. Rather than sticking to the plan and attempting a hard training session when my HRV is below baseline, I simply plan a lighter workout or omit it all together to allow for the needed rest. Typically it only takes one day of reduced training to bring my HRV back up. If I ignore the warning my HRV is giving me however, it will take much longer for me to bring my scores back up and the workout is usually poor.

You certainly don’t need to be a competitive athlete to monitor your stress levels. Balancing your stress is crucial to your own health and longevity. If you feel that you may be under a lot of stress, physically, mentally or otherwise, you should consider monitoring your HRV to help keep things in check.

For a more elaborate description of what HRV is and how you can use it start here and here.

New article for Performance Education Association

This past March I had the pleasure of meeting with Mark Roozen, a strength coach with the Cleveland Browns as well as one of their AT’s. We discussed HRV and it’s potential usefulness in a team setting at both the collegiate and professional level.

Coach Roozen and several other prominent figures within the strength and conditioning field operate a website dedicated to educating professionals in the field about various topics pertaining to performance including nutrition, training, sport psychology and so on. He invited me to write an article on HRV for the site. The article is up and you can see it here http://www.tpeagroup.com/public/Heart%20Rate%20Variability%20Training.cfm

In the article I discuss;

– What HRV is

– Why it’s important to monitor

– How you can monitor HRV (devices with new screen shots and features)

– Relevant research that demonstrates the effectiveness of HRV monitoring

I hope you enjoy it!

How to increase HRV: Part 2 – Nutrition

In Part 1 of this series I discussed inflammation and its relationship with HRV. Through monitoring my HRV daily I’ve learned that nutrition plays an important role in improving or reducing your adaptive capacity. Eating foods that promote inflammation in the body creates stress that your body must deal with. In dealing with this stress we reduce our ability to adapt and recover from training. Below is a screen shot of my HRV trend over a week of eating large amounts of foods commonly known to promote inflammation. You can see my scores drop each day and only return once I resumed eating better foods. This experience inspired this article series. To discuss the details of nutrition and inflammation I’ve recruited the help of my friend and PhD candidate Marc Morris.

Hi

My name is Marc Morris and I am a PhD student in Nutrition at the University of Saskatchewan. First, I’d like to thank Andrew for the invitation to participate in the discussion surrounding the use of heart rate variability and strength training. The utility of HRV in strength training is very interesting to me. Being a competitive powerlifter, I am always actively seeking ways to improve my training cycles. Truthfully, I don’t know a great deal about this measurement. What I do understand, however, is the potential that exists in a real-time measurement of the autonomic nervous system. Monitored on a daily basis, HRV may provide a tool from which we can objectively auto-regulate our training.

The goal of a dedicated athlete should be to maximize his or her adaptability to training. This is done in part by minimizing unnecessary stress on the body outside of training. From a nutritional standpoint, what you eat (or don’t) can play a significant role in your recovery and adaptability. This is what drew me to nutrition in the first place. Is it possible to improve my performance and body composition through what I consume? Your lifestyle plays a very big role in your training status and may very well be the difference in the transition from mediocre to elite.

We’ve always been told what you eat can effect performance (I’ve also learned that it’s a good idea to learn why you’ve always been told something on your own terms – usually these beliefs fall into the class of dogma). But, outside of eating complete junk and feeling like garbage, this is a tough concept to see and feel. It may not noticeably affect your body composition, it may not affect your energy, but it may be hindering your recovery. Chronic inflammation is not easy to “feel”. At least not until you’ve over done it.

My job today, and hopefully in future occasions, is to discuss how nutrition may influence inflammation, and what you can do to position yourself to be more adaptable in a training cycle. Andrew noticed a decreasing trend in his HRV over a week of entirely uncharacteristic eating (discussed here). This included plenty of processed foods, trans fats, refined carbohydrates and so on. These foods are common culprits of inflammation in the gut. Andrew felt well rested and rated his overall stress levels as low however his diet that week was creating an apparent stress that he couldn’t feel.

In Part 1, Andrew did a great job distinguishing what we know as acute inflammation, our body’s immediate response to injury and infection, and chronic systemic inflammation. As of late, “inflammation” has been a buzzword in most health circles. It has fallen victim to the black and white, all is bad classification. Chronic inflammation is a lingering, low-grade condition that has been linked to just about every health condition in the modern world, from heart disease to cancer. Managing this type of inflammation will help you not only avoid chronic disease in the latter half of your life, but could improve your performance now.

Health professionals may use biomarkers such as C-Reactive Protein (CRP, an acute inflammatory protein) and interleukin-6 (IL-6, a cytokine involved in the inflammatory response) to assess chronic inflammation (despite having a half life of 19-hours, CRP seems to correspond to the chronic condition pretty well). This may be suitable for someone that regularly visits the doctor. But, if you’re a healthy individual these tests will be costly and invasive (blood drawn). Additionally, this type of test won’t allow for an ideal frequency.

The most pronounced effect of diet on inflammation involves the essential fatty acids (EFA). Without going into too much of the physiology about this, the omega-3 and omega-6 fatty acids act as substrates in cascades that control inflammatory products (De Caterina and Basta, 2001 [free review]). Neither are bad, per se, however, the typical North American diet contains larger amounts of omega-6 that largely affect the pro-inflammatory pathway. This topic is so vast it deserves an entire blog post itself. The take home message would be: increase omega-3 intake to balance fats by eating fatty fish (or at least supplement with fish oil).

The ingestion of trans-fats have been shown to increase inflammatory markers, such as the aforementioned markers, CRP and IL-6 (Baer et al. 2004). To minimize low-grade chronic inflammation this would be a fatty acid to avoid (Calder et al. 2011). Foods such as pastries, doughnuts, margarine, and other snack foods commonly have high amounts of this unhealthy fat. So, apart from minimizing excess calorie intake, the high trans fat content of “junk” foods and its effect on inflammation is another reason to avoid these.

The last dietary factor I would like to address today would be alcohol. In small doses (1-2 drinks/day), alcohol has consistently shown to have an anti-inflammatory effect. Above this moderate dose, this effect changes to pro-inflammatory. So a glass of red wine every once in a while isn’t such a bad thing. However, going out and having 10 drinks will have some unwanted effects on your recovery (inflammation being only one of many negative effects).

It is important to acknowledge that not everyone is the same. Dietary choices may have a differing inflammatory response in each person. Having said that, below this article there is a chart of foods that are typically anti-inflammatory verses foods that are typically pro-inflammatory.

That’s it for today. In future posts, I’d like to address the macronutrient composition of the diet and the hypothesized mechanisms for dietary related inflammation.

Note: We are reluctant to categorize foods as in many cases it’s effect on the body is conditional. For example, lactose intolerant individuals will have a more adverse reaction to dairy than one who isn’t lactose intolerant. People with gluten sensitivity should obviously avoid gluten. So take this chart with a grain of salt as they are just intended to be generalizations.

Foods That Promote Inflammation

Foods That Reduce Inflammation

Pastries/Doughnuts Ginger
Margarine Tumeric
Dairy Onions
Gluten Garlic
Refined Wheat Products (breads, pastas) Citurs Peel
Peanuts Olive Oil
Hydrogenated Oils Organic, Grass Fed Meats
Vegetable Oil Wild Caught Fish
Grain/Corn Fed Meat and Fish Green Tea
Processed/Deli Meats Green Veggies (Broccoli, Kale)
Sugar Berries

Practical Applications:

  • Try and stick to grass fed meats and wild caught fish
  • Eat plenty of fruits and vegetables
  • Drink tea
  • Use spices and herbs when cooking
  • Use olive oil
  • Try to minimize refined carbohydrate sources

Note: We understand that eating this way isn’t entirely practical for students and busy folks. The key is simply to eat less of the foods you know may be hurting your progress and eat more of the ones you know will help.

References

De Caterina, R., Basta. G. (2001). European Heart Journal Supplements, 3 (Supplement D), D42–D49

Calder, P.C., Ahluwalia, N., Brouns F. et al. (2011). British Journal of Nutrition, 106, S3, 1-78.

Baer, D.J., Judd. J.T., Clevidence, B.A., et al. (2004). American Journal of Clinical Nutrition, 79, 969–973

How to increase HRV – Part 1: Inflammation

Over the next several posts I’d like to share my thoughts on ways that you can increase your HRV to improve your health, fitness and responsiveness to training. I will tie in some research with anecdotal experience and encourage you to keep in mind that some of this may be a bit theoretical at times. These thoughts are based on my current knowledge level and experience with HRV as well as discussions I’ve had with other like minded individuals (many of which are much more experienced than I).

I’ve spent a lot of time lately reading about the relationship between inflammation and HRV and therefore this will be the focus of today’s discussion. I highly recommend checking out this article where Dr. Miller presents and summarizes some of the research pertaining to nervous system regulation of inflammation and HRV. I don’t yet fully grasp this relationship as the physiology of inflammation can get pretty technical to say the least, but I would still like to offer some thoughts. Before I get into further detail about anything I’ll go over some preliminaries.

What is inflammation?

Inflammation is the protective or destructive response of body tissues to irritation or injury in attempt to maintain tissue homeostasis. Inflammation may be acute or chronic. The hallmark signs of inflammation are; redness, heat, swelling, pain and is often accompanied by loss of function. Too much inflammation or too little inflammation can be indicative of, or lead to a variety of diseases.

At the most basic level inflammation is a sympathetic response. This isn’t exactly black and white however as I’ve come across some research that shows how the SNS can actually play a small role in reducing inflammation in certain organs under certain conditions (Straub et al, 2006). However, for the purpose of this discussion I’ll generalize the SNS as being predominantly involved in inflammatory responses.

Parasympathetic activity on the other hand, modulates inflammation by inhibiting the secretions of pro-inflammatory cytokines (Mravec, 2011). Inflammation is not just caused from physical stress (training, injury, etc) but can also be brought on by; ingesting certain foods, excessive alcohol intake, smoking and exposure to pollution and certain chemicals. It appears that even psychological stress can cause inflammation (Steptoe et al, 2001).

It should be obvious that inflammation is pretty important to one’s survival. Inflammation is a major part of the healing process. For example, inflammation is necessary for hypertrophy (muscle growth) as it participates in protein breakdown, removal of damaged muscle fibers and production of prostaglandins (Pedersen & Hoffman-Goetz, 2000).

To effectively adapt from a stress (like training) we need to allow our body to go through the process of healing itself. In doing so, we increase our tolerance to the initial stressor. With adequate adaptation to strength training, we increase our strength (this applies to endurance, hypertrophy or any other quality you train to develop). So this explains why making sure we are sufficiently adaptable is important.

The simplest and most effective measure of your adaptability in my opinion is through heart rate variability (HRV) monitoring. In short, HRV tells you when your body can tolerate stress well (such as training) and when it can’t. It does so by providing the user with information about the balance of the autonomic nervous system. It does this by measuring the variability between your heart beats over a given period of time.

Generally speaking,

High HRV = low inflammation, good recovery, good testosterone-cortisol ratio, high tolerance to stress (good adaptability) → A green light for training.

Low HRV = an increase in inflammation (not always), insufficient recovery, reduced testosterone-cortisol ratio, low tolerance to stress (poor adaptability) → Reduction or cessation of training suggested.

It can get a little more complicated than this but for now this explanation will suffice.

Back to inflammation…

So even though I just explained why inflammation is important I’ll switch gears here and say that we are not doing ourselves any favors by contributing to further inflammation via nutritional, environmental and/or psychological factors.

Some of this is out of our control such as pollution and mental stress. It can be difficult to control what’s in the air we breathe or the chemicals we absorb from different surfaces and products. We also can’t control our car breaking down or other mentally frustrating events. However, we can control things like what we ingest (and what we don’t for that matter), how much we sleep, our fitness levels, and so forth. Maximizing these controllable variables can really enhance your adaptability by reducing or preventing unnecessary inflammation and/or promoting parasympathetic activity.

The forthcoming installments to this series will focus on ways that can potentially help raise your HRV (nutrition, aerobic work, restoration, massage, etc.).

The plan right now is for the next post to be about nutrition. I’ve enlisted the help of a friend who’s completing his PhD in Nutrition at the University of Saskatchewan to explain how certain foods contribute to inflammation and why this is something we generally want to avoid. I feel that much of the information presented in the next post will really illustrate WHY you should be more conscious about what you eat. As a former athlete and current trainer of athletes I’ve seen what it’s like to be on either side. Athletes know that they’re supposed to eat certain foods and avoid others. But they usually don’t understand why. They have a hard time understanding how what they ate on the weekend can affect their ability to get stronger or faster. We’ll discuss not just the importance of reaching appropriate macronutrients (protein, carbs, fats), but touch on which sources are likely better than others. We’ll touch upon alcohol intake as well since that’s obviously a major factor in the life of college (and let’s be honest, high school) athletes.

Thanks

Squat vid from tonight – 525

Some squattin’.. Backs feeling pretty good since the injury. Getting closer to my all time PR of 551 that I did at 242. I’m about 228 right now.

Strength and Conditioning vid’s from across the NCAA (Football, Baseball, Softball, Soccer etc)

Here are some college strength and conditioning video’s from across the NCAA that you might enjoy. I’ll try and post some new video’s once a week from now on.

Ole Miss Football

 

Maryland Football

 

South Carolina Football

 

Notre Dame Football

 

Dayton Football

 

Notre Dame Hockey

 

North Texas Football

 

Florida State Football

 

Southern Miss Women’s Softball

 

Merrimack Baseball

 

Oklahoma State S&C Facility

 

Army Football

Happy Easter!

Managing Training for Strength

In my last post I discussed some of the shortcomings of pre-planned training. This inspired a conversation between myself and a friend about percentage based training. Today I’d like to talk about some thoughts I have on this topic. Additionally, I will offer some potentially better strategies to help manage and adapt your training on a day to day basis.

To be clear, percentage based training (in the context of this discussion) refers to planning training loads based on a percentage of your 1 rep max in a given lift.

For example, if your 1 rep max in the Bench Press is 300, you know that 50% of this is 150. Strength is generally believed to best be built by working over 85% of your 1 rep max. From our example, 300x.85=255 and therefore 255 is 85% of our 1 rep max of 300. The purpose of using percentages is to control the level of intensity, effort and fatigue placed on the body to create a desired effect. Generally, you can perform only 1 rep with 100%, 2 reps with 95%, 3 reps with 90% and so on.

% 1RM

100

95

90

85

Reps

1

2

3

5

I think that percentage based training is most effective for novice to intermediate level lifters. This is because they are nowhere near their strength potential. Progressing from workout to workout is much more feasible for them. They can adapt better and faster to the loads because the loads simply aren’t that great yet.

Now for a more advanced trainee, percentage based programs can be less beneficial for several reasons.

  • Percentages are based off a 1rm (or a calculation of a 2-5rm) that were taken on a given day. Your strength levels can and will vary day to day based on recovery status, stress levels, nutrition and several other factors. Therefore a percentage based off the 1rm recorded on a previous day will unlikely be a true reflection of present strength levels.
    90% of your 1rm can easily be 100% on an off day. We’ve all had workouts where the weights felt heavy. We’ve also had days where the weights felt light. If you grinded out 85% for 3 hard, sloppy reps, was it really 85%? In reality it was more like 90%. This can create problems in the program because 85% x3 should generally be a very manageable lift and therefore not tax the body too much. However, since the weight was actually much heavier than 85% on that given day, we’ve created more stress and fatigue then was called for. This is how we set ourselves up for missing lifts in subsequent workouts and nothing is more frustrating than missing lifts.
  • Pre-planned percentage based training is basically telling your body that it must adapt to the training rather than allowing your training to adapt to you. Unfortunately, we do not have conscious control over how we adapt or when. Therefore, it would be much wiser to plan according to the current strength and adaptability levels of our body. We can’t force our body to get stronger.. often times when we try and do this our body tells us to suck it and we regress, or worse, we get hurt. I’ve been down that road.

How do we adapt our training to our body?

1.

I’ve become a big advocate of using RPE (ratings of perceived exertion) to manage training loads. I first learned about RPE when studying for the CSCS exam several years ago. However, it wasn’t until I read Mike Tuchscherer’s Reactive Training Systems Manual that I really started to incorporate them into my training. Essentially, with an RPE system we plan to work up to a given RPE for a given amount of reps and sets as opposed to using a percentage of a 1rm. This allows us to “pre-plan” our training in accordance with our most current strength level. The following chart shows how a RPE score corresponds to effort level.

RPE

Reps left in the tank

10

0

9

1

8

2

10 is an all out effort. It can be a 1 rep max, a 5 rep max or any number really. As long as it was an all out effort where you are unable to perform another rep. An RPE of 9 means you had 1 rep left in the tank. There is a huge difference between an RPE of 9 and 10 due to its effect on the CNS. It takes much longer to recover from a 10 than a 9. This is what makes RPE’s more accurate than percentages.

This system eliminates missed reps at a given percentage because the selected weight is now much more accurate and fits your present strength levels for that day. For more info on RPE’s check out Mike’s book and free articles on his site.

2.

Pay attention to indicators. Things such as sleep, stress, nutrition and restoration work can all have a pretty drastic effect on your strength levels and adaptability. The following is a list of different indicators you can start to monitor if you don’t already.

  • Sleep: I rate my sleep on a scale of 1-5.
    5 = 7-8 hours of sleep, no wakes or disturbances, morning wood, etc
    4= 1 disturbance or wake up during the night
    3= less than 7 hours of sleep, and/or multiple wake ups
    2=Usually if I’m sick and can’t fall asleep
    1=no sleep
    Supplementing with ZMA really helps improve the quality of my sleep.
  • Stress: Primarily for this I use HRV measurements. I’m not going to elaborate on this since I’ve written about it extensively in previous posts. If you’re unfamiliar with HRV then I highly recommend you click here and start with “HRV Explained Part 1″.

    If HRV isn’t an option for you there are other way’s to monitor your stress. I have to thank Simon Wegerif (creator of iThlete) for introducing me to this method in a conversation we had over Skype. Stress can be classified as; physical, mental or chemical.

    Physical Stress = training, labour, etc.

    Mental Stress = financial problems, fighting with a significant other or parent, travel, death in the family, etc.

    Chemical Stress = Alcohol intake, poor or inadequate nutrition, etc.

    You may not perceive things like poor nutrition or mental stressors as significant stress, but I assure you, they play a big role in how strong you’ll be on a given day and how much further training stress you can handle.

    Rate each one of these on a scale of 1-5. You’d be surprised what you discover by monitoring stress and how it relates to and effects your strength levels

    I love the HRV app because it plots your stress levels on a chart so you can see trends over time. Looking back over the trends with your training log and indicators tell you a lot about what’s working and what’s not.

  • Restoration Work: Foam rolling, stretching and moderate aerobic work can have a huge impact on your recovery and fitness levels. I will reserve writing about the benefits of aerobic work for strength athletes now since I plan to write an entire post on it in the future, but understand that a little cardio (in the form of jogging, sled dragging, etc) goes a long way in contributing (indirectly) to strength gains. I simply keep a log of what type of aerobic work I do, for how long and if I use a sled I track the weight.
  • CNS Test: Finally, I like to perform a quick CNS test after my warm-ups but before I start lifting. This can be in the form of a vertical jump, broad jump, grip test or whatever else you can think of. It’s important to be consistent. Compare your daily result to your baseline or average and that will usually indicate how your workout will go. I’ve actually found that skipping (yes, jumping rope) is a good indicator for me. Some days I can skip like a 3rd grade school girl with flawless technique. Other days I can’t get into a rhythm and stomp the rope every ten jumps. I’ve found that this has a correlation to my strength performance that day.

The longer you train and more advanced you get, the harder it is to make progress. If you haven’t adopted any of the above strategies to help monitor your training I encourage you to consider some. You have nothing to lose and only strength to gain.

Thanks for reading.

How effective is pre-planned training?

I was about 4 weeks out from Canadian Raw Nationals 2011 (powerlifting). I was on pace to hit personal records in all 3 lifts at a lighter bodyweight. I took a scheduled deload and when I started my last training cycle before the meet, the weights felt like a million pounds. I couldn’t fix whatever the problem was and ended up pulling out of the meet. This was a huge disappointment. I thought to myself that there had to have been a way to prevent this or at least see it coming so I could make adjustments in time to avoid such a disaster. I knew about HRV and considered using it before but held off. It was this meet prep disaster that inspired me to purchase the iThlete to determine how useful it is for strength athletes (see my post here for an explanation of what the iThlete is and how it works). It’s now been 8 months since I’ve been using this device and it has changed my whole outlook on managing the training process.

In this post from a couple of months ago I wrote about my observations with HRV. I also gave a vague explanation of how I was then going to use HRV to guide my training. At this point I’d like to share what I’ve learned from measuring my HRV since then.

  • I have not taken a deload week since late January. Typically I would deload after every 3 week cycle. The purpose of the deload was to allow my joints a break from the heavy loading, allow my CNS to recover from the heavy lifting and allow for optimal recovery so I return at a higher level of strength (supercompensation). I was pretty surprised to see that in nearly 2 months of training I have not felt the need to deload. Instead I have simply chosen to take a deload day only when my HRV score was low. I have squatted heavy every week during this experiment because my HRV was always at baseline or above on Mondays (Squat day). I have had to deload on only 3 occasions. All of these occurred on a Wednesday (Bench Day). I continue to make progress every week and therefore will continue with not taking a planned deload week. On my deload days I simply work up to the heaviest weight I can handle with zero strain or struggle for the same amount of reps I would’ve done anyway.

    For example, on Bench day when I needed to deload I was supposed to work up to 3 sets of 3 with a 4 rep max or RPE of 9. However since my HRV was low and I had to deload I simply worked up to 1 set of 3 with a weight that I felt if I added any more weight too, would cause me to strain. For the assistance and accessory work I simply cut the volume in half. The take home message (atleast so far) is that deloading should occur when your body will not tolerate intense training. HRV provides this information. What’s the point of taking a whole week to deload if your ability to adapt to stress returns to a good level within only a few days?

    I will experiment with planned overreaching in the future where I will purposely train heavy as my HRV declines and follow it up with a planned deload. This is more similar to how athletes are training. My concern with this method is the potential heightened risk of injury from training when HRV is low. See this post for further discussion on HRV and injury.

  • This past week was my spring break. I went to Cincinnati to visit my family. If you know me personally you are aware that I’m pretty strict with my eating. I eat a lot, but I stick to whole foods and avoid processed/junk foods. I also eat fairly low carb. Well, in Cincinnati I allowed myself to eat whatever I wanted all week. I was crushing home-made oatmeal butterscotch cookies, ice cream, nacho’s and guacamole, Cheesecake Factory dinners and desserts, the famous Cincinnati Chilli, pub food, etc. It was a disaster. Apart from the binge eating I felt very well rested, slept well and enjoyed some unseasonably warm weather.

    Cincinnati Chili

    It’s fair to say that the only thing out of the ordinary that would have been stressful to my body was my terrible eating. Well, my HRV declined after the second day and it got worse each day after. It only climbed back up again since I returned and resumed my usual eating habits. You can see in the screen shot below that my HRV steadily decreased the longer I ate poorly and started to climb back up on Saturday (returned to PA on Friday evening). Although we’re all well aware that nutrition plays a vital role in how we recover from training and perform, it was pretty eye opening to see just how important nutrition is. Such a simple way to improve performance and adaptation to training is to just eat well. How much time are we wasting busting our ass in the gym if we go home every day and eat terribly?

  • Lately, whenever my HRV is low I feel weaker. I found it interesting that on many squat workouts in the past 6 or 7 weeks I felt that I was fighting the bar, not finding my groove, etc, yet was still squatting heavy. When my HRV has been low (3 low days on Bench days) the weight would feel much heavier. 315×5 is a walk in the park for me typically. However, on a deload day it was a major grind. I really shouldn’t have gone that heavy on a deload. This leads me to believe that performance will be worse when HRV is low (consistent with research that I discuss here.) Since I’ve been able to squat heavy even when my technique felt shaky when HRV was high, it leads me to believe that performance will likely be better when HRV is high. I’ll be doing some research in the near future on collegiate football players to see if I observe the same thing.

My experience with HRV and the research I’ve read thus far has lead me to believe that pre-planned training for collegiate athletes is not optimal. It is common for strength coaches to program around Christmas holidays, spring break and so on. Keep in mind that holiday’s and breaks are usually planned deloading periods that mark the end of a given cycle/phase and will mark the beginning of a new one upon return. This may work if the athlete’s all lived the exact same lives and had the same genes as one another.

A common example of pre-planned periodization that I found on google images

Allow me to illustrate for you an example of how ineffective this method is not because the theory is incorrect (a debate for another time), but because it fails to account for the behaviour of the athletes. I’m going to provide 4 scenario’s of what many athlete’s on the same team may do over the break that will effect there adaptation to the previous cycle and readiness for the next cycle.

Scenario 1: The athlete heads to Florida for spring break and drinks alcohol every day, all day on the beach, parties all night and eats cheap restaurant food.

Scenario 2: The athlete goes home and although doesn’t drink or party all night, he eats terribly.

Scenario 3: The athlete goes home and rests all week and eats perfectly.

Scenario 4: The athlete goes home and trains at his own gym and therefore doesn’t get much rest.

Many football teams have over 100 players. This creates 100 different scenarios. It’s quite obvious that not every athlete will be prepared for the same training loads. Any strength coach is already aware of this and unfortunately has to do their best with what they’ve got. However, since HRV is sensitive to any stress that our body experiences, we now have a more accurate way to determine who is ready and who is not. This can prevent you from overtraining certain athletes, undertraining other athletes and most importantly reducing the likelihood of injury. If you so desired, you can investigate further into the personal lives of the athletes to determine why they are experiencing so much stress when the training isn’t the cause.

I realize that monitoring the HRV of all your athletes may seem impossible but the new apps that are available make it extremely easy and affordable. The biggest challenge becomes how you will handle providing different workouts on a day to day basis according to everyone’s HRV score. I’ll share my thoughts on potential ways to accommodate this in a future post, but I believe it can be done without too much burden.

Today’s post paints a picture of what my current thought process is based on my experience and the literature. I am really excited to get the research started on the football players. In my next post I will give an update of exactly what I’ll be doing, why, my hypothesis and all that good stuff.

Thanks for reading.