New Study: Interpreting daily HRV changes in female soccer players

Here’s a quick look at our latest study published ahead of print in the Journal of Sports Medicine and Physical Fitness. Below is the abstract and some brief comments about the findings.

Full text link:

Interpreting daily heart rate variability changes in collegiate female soccer players

BACKGROUND: Heart rate variability (HRV) is an objective physiological marker that may be useful for monitoring training status in athletes. However, research aiming to interpret daily HRV changes in female athletes is limited. The objectives of this study were (1) to assess daily HRV (i.e., log-transformed root mean square of successive R-R interval differences, lnRMSSD) trends both as a team and intra-individually in response to varying training load (TL) and (2) to determine relationships between lnRMSSD fluctuation (coefficient of variation, lnRMSSDcv) and psychometric and fitness parameters in collegiate female soccer players (n=10).

METHODS: Ultra-short, Smartphone-derived lnRMSSD and psychometrics were evaluated daily throughout 2 consecutive weeks of high and low TL. After the training period, fitness parameters were assessed.

RESULTS: When compared to baseline, reductions in lnRMSSD ranged from unclear to very likely moderate during the high TL week (effect size ± 90% confidence limits [ES ± 90% CL] = -0.21 ± 0.74 to -0.64 ± 0.78, respectively) while lnRMSSD reductions were unclear during the low TL week (ES ± 90% CL = -0.03 ± 0.73 to -0.35 ± 0.75, respectively). A large difference in TL between weeks was observed (ES ± 90% CL = 1.37 ± 0.80). Higher lnRMSSDcv was associated with greater perceived fatigue and lower fitness (r [upper and lower 90% CL] = -0.55 [-0.84, -0.003] large, -0.65 [-0.89, -0.15] large).

CONCLUSIONS: Athletes with lower fitness or higher perceived fatigue demonstrated greater reductions in lnRMSSD throughout training. This information can be useful when interpreting individual lnRMSSD responses throughout training for managing player fatigue.

The idea of evaluating relationships between the coefficient of variation of lnRMSSD  (lnRMSSDcv) with fitness parameters was inspired by a 2010 paper by Martin Buchheit et al. In that study,  greater lnRMSSDcv derived from post-submaximal exercise recordings negatively correlated with maximum aerobic speed in youth soccer players. We had similar findings in our current paper where we observed large negative relationships between lnRMSSDcv (derived from waking, ultra-short smartphone  recordings) and VO2max and Yo-Yo IRT-1.

Another objective of this study was to focus on individual HRV responses in addition to group responses (see figure below). An interesting observation we made was that greater lnRMSSDcv was also associated with higher perceived fatigue. This finding is in contrast to a recent case comparison study by Plews et al. that found a decreased lnRMSSDcv to be associated with non-functional overreaching in an elite triathlete. However, this can possibly be explained by the severity of fatigue. For example, the decreased lnRMSSDcv observed in the triathlete was accompanied with a chronically suppressed lnRMSSDmean. Thus, lnRMSSD decreased and did not periodically return to baseline.

In our current study, large decreases in lnRMSSD typically returned to baseline after 24-72 hours. Thus, loads were not so high that the athletes were unable to return to baseline. Therefore, it is possible that there may be a progression in one’s HRV trend leading from moderately fatigued to severely fatigued that is characterized first by a greater lnRMSSDcv (reflecting fatigue and recovery process) followed by chronic suppression of lnRMSSD with no rebounding to baseline (reduced lnRMSSDmean and reduced lnRMSSDcv). More on this to come.

Figure interpreting daily HRV

HRV monitoring for strength and power athletes

This article is a guest post for my colleague, Dr. Marco Altini’s website. Marco is the creator of the HRV4training app that enables HRV measures to be performed with no external hardware (e.g., HR strap), just the camera/flash of your smartphone and your finger tip. He has several archived articles pertaining to HRV measurement procedures and data analysis from compiled user data that are well worth checking out.

The intro is posted below. Follow the link to read the full article.

Intro

​A definitive training program or manual on how to improve a given physical performance quality in highly trained individuals of any sport does not exist. Nor will it ever. This is because of (at least) two important facts:

  1. High inter-individual variability exists in how individuals respond to a given program.
  2. The performance outcome of a training program is not solely dependent on the X’s and O’s of training (i.e., sets, reps, volume, intensity, work:rest, frequency, etc.) but also largely on non-training related factors that directly affect recovery and adaptation.

The closest we’ll get to such a definitive training approach, (in my opinion) may be autoregulatory training. This concept accepts the 2 facts listed above and attempts to vary training accordingly in attempt to optimize the acute training stimulus to match the individual’s current performance and coping ability.

Improvements in physical performance are the result of adhering to sound training principles rather than strict, standardized training templates. A thorough understanding of sound training principles enables good coaches and smart lifters to make necessary adjustments to a program when necessary to maintain continued progress. In other words, good coaches can adapt the training program to the athlete rather than making the athlete to try and adapt to the program. This is the not so subtle difference between facilitating adaptation and trying to force it.

The theme of this article is not about traditional training principles, but rather about recovery and adaptation concepts that when applied to the process of training, can help avoid set-backs and facilitate better decision-making with regards to managing your program. Given that this site is about HRV, naturally we’re going to focus on how daily, waking measures of HRV with your Smartphone may be useful in this context. For simplicity, we will focus on one HRV parameter called lnRMSSD which reflects cardiac-parasympathetic activity and is commonly used by most Smartphone applications. Drawing from research and real-life examples of how HRV responds to training and life-style factors, I hope to demonstrate how HRV can be used by individuals involved in resistance training-based sports/activities to help guide training.

 

Continue reading on the HRV4training site.

New Podcast Interview: HRV in Soccer

Last week I had pleasure of being interviewed on the Just Kickin’ It Podcast. In the interview we discuss HRV basics, implementation and interpretation with soccer teams, our recent research findings and future directions.

Thank you to Brian and Josh for having me on. I also encourage you to check out the podcast archives as there are some great interviews with other researchers and coaches (i.e., Dr. Mike Young, Dr. Tim Gabbett and Dr. Shawn Arent to name a few I’ve listened to), in addition to plenty of others that are on my list.

Enjoy and Merry Christmas.

 

 

Early HRV changes relate to the prospective change in VO2max in female soccer players

It’s been a good start to the Thanksgiving break with the  acceptance of our latest study entitled “Initial weekly HRV response is related to the prospective change in VO2max in female soccer players” in IJSM (Abstract below).

We’re currently working on supporting these findings with a much larger sample size in the new year.

ABSTRACT

The aim of this study was to determine if the early response in weekly measures of HRV, when derived from a smart-phone application, were related to the eventual change in VO2max following an off-season training program in female soccer athletes. Nine female collegiate soccer players participated in an 11-week off-season conditioning program. In the week immediately before and after the training program, each participant performed a test on a treadmill to determine maximal oxygen consumption (VO2max). Daily measures of the log-transformed root mean square of successive R-R intervals (lnRMSSD) were performed by the participants throughout week 1 and week 3 of the conditioning program. The mean and coefficient of variation (CV) lnRMSSD values of week 1 showed small (r = -0.13, p= 0.74) and moderate (r = 0.57, p = 0.11), respectively, non-significant correlations to the change in VO2max at the end of the conditioning program (∆VO2max). A significant and near-perfect correlation was found between the change in the weekly mean lnRMSSD values from weeks 1 and 3 (∆lnRMSSDM) and ∆VO2max (r = 0.90, p = 0.002). The current results have identified that the initial change in weekly mean lnRMSSD from weeks 1 to 3 of a conditioning protocol was strongly associated with the eventual adaptation of VO2max.

 

Trend Changes versus Daily Changes

HRV fluctuates to a certain extent on a daily basis. I’ve seen athletes with coefficient of variations (CV, a marker of deviation from the weekly mean) as low as 2% to >15%. An athlete’s CV changes over time, which itself serves as what I believe to be, an important indication of training adaptation.  The CV is related to individual fitness level and training stress and possibly even performance potential. Measurement position will also affect the CV with lower CV’s observed in the supine position compared to standing.

Here’s an important lesson I’ve learned about interpreting HRV in athletes. A daily change in HRV can occur for a number of reasons, and may or may not have any meaningful impact on acute performance or “readiness”. Putting too much focus on an acute change in HRV without stepping back and observing the overall trend is a bit myopic. This isn’t to say that daily changes aren’t useful, just that a full appreciation of the training process, including the evolution of the trend in response to training will enable better analysis and therefore decision-making. This is because longitudinal changes in an athlete’s HRV trend do not occur for no reason. Increases, decreases, greater fluctuation, less fluctuation, when assessed over time, are all very meaningful.

Observe the screenshot below which details the last 6 months of a high level collegiate sprint-swimmers trend. The data pretty much interprets itself when you compare the changes in the trend to changes in training and life events.

6motrend

What can we observe from this?

  • Greater fluctuation and a decreasing trend during heavy training stress
  • Less fluctuation and an increasing trend during reduced training stress
  • Greater fluctuation and a decreasing trend during normal training with increased academic stress (preparing for and writing exams). Thanks to recent work from Bryan Mann, we know that this increase in non-training related stress may put athletes at greater risk of injury or illness.

I strongly believe that to use HRV effectively, you need to consider the changes in the trend, and not just the day to day stuff. When asked what HRV products are worthwhile or what do I think of App X or product Z, I always suggest that they invest in one that provides the best visualization of the data over time and includes other markers of training status (i.e., load, wellness, etc.). This enables more meaningful interpretation of the data and can therefore be more insightful and useful when determining the appropriate action to take with regards to training program adjustment.

When do we intervene?

At what point should the coach or trainer implement a training or lifestyle intervention when an athlete is showing warning signs of excess fatigue?

This is easy to determine when looking back on the data retrospectively, but in real-time this can be a challenging question to answer. Especially when performance remains relatively stable during the early stages. There’s a sometimes blurry line between being too soft (changing the plan at every red flag) and being too hard (ignoring too many red flags).

In observing this athletes trend, it appears that the situation could’ve been easily avoided had some type of intervention been made early enough. The trend for HRV, and perceived measures of sleep quality, fatigue, soreness and stress all indicate that this athlete is heading for trouble.

downward trend

With poor sleep and high levels of training/non-training related stress the immune system is compromised and the athlete gets sick.

At what point do we intervene? Intervention starts with a conversation. The conversation acknowledges a red flag and helps determine what means of action to take (if any at all). In this situation, the first uncharacteristically low sleep rating should’ve started the conversation.

Effect of Water Ingestion on HRV: Implications for daily measures

One of the more challenging aspects of implementing HRV monitoring with athletes is ensuring that daily measures are performed reliably. Unreliable or inconsistent measurement procedures can lead to invalid data (false positives or false negatives) and therefore a misinterpretation of training and recovery status. With ultra-short HRV recordings (i.e., ~60 s) it is even more important that measures be strictly standardized to improve the quality of the data.

Waking measures are preferred to capture one’s HRV in a truly rested condition, before any external stimuli can confound the measure. A potential confounding variable that users should be aware of is the effect that water ingestion has on various physiological processes that stimulate autonomic activity and thus alter one’s HRV. This was brought to my attention several years ago by my colleague, Dr. James Heathers.

Immediate changes in HRV take place following water consumption that can last for up to 45 minutes or longer. For example, Routledge and colleagues1 tested the effects of 500 ml water ingestion on HRV in 10 healthy individuals between the ages of 24 and 34 years. On two separate occasions, the subjects reported to the lab in a randomized order for 500 ml water ingestion or 20 ml water ingestion (control). The experiments took place at 8 am before the subjects had anything to eat or drink and after bladder emptying. For a 30 minute period, subjects rested in a semi-supine position before water ingestion. HRV was determined from 5-min ECG windows immediately before and at 5, 20 and 35-min post water ingestion.

Resting HR on average was between 2 – 7 bpm lower than control throughout the post-consumption 45-min period. RMSSD increased between 8 -13 ms during this period compared to control which increased between 2 – 8.8 ms.

Experiment

Out of curiosity I conducted a similar but much smaller experiment (n=1) to see how HRV responded to 500 ml water ingestion. The data is analyzed in 5-min segments before and after drinking in the seated position with a 1-min period excluded from analysis during which the water was ingested. The tachogram and results are posted below.

water tachogram

Tachogram including pre and post water ingestion

pre water consumption

Pre

Post water results

Post

In Martin Buchheit’s, recent review paper, a 3% smallest worthwhile change for lnRMSSD is suggested. In this situation water consumption resulted in an increase in lnRMSSD nearly 2x the smallest worthwhile change.

results table water hrv

*Note that lnRMSSDx20 represents the modified HRV value provided by HRV app’s like ithlete. This has been highlighted for those who are only familiar with these values.

Why does water consumption increase HRV?

The autonomic responses to water ingestion appear to initially be due to the stimulation of osmoreceptors within the gut which causes vasoconstriction (a sympathetic response) and a slight increase in total peripheral resistance.2 Increased baroreceptor sensitivity and increased cardiac-vagal stimulation are thought to occur to counteract the pressor effect (increases in blood pressure) which is why we see a slowdown in resting HR and increase in HRV.2 Effects from the Renin-Angiotensin-Aldosterone system can also not be ruled out given their role in mediating body fluid levels that can effect cardiovascular responses. Water temperature may also have an effect as 250 ml of ice water appears to increase HRV to a greater extent than room-temperature water.3 This may be due to stimulation of thermal vagal receptors in the esophagus.3 Additionally, water ingestion following exercise has been shown to increase parasympathetic reactivation.4

Implications for Daily Monitoring

Tell your athletes to wait until after measuring their HRV to drink fluids and to do so consistently. Otherwise, values may be obscured with a false positive when they drink fluids before the measure.

References:

  1. Routledge, H.C., Chowdhary, S., Coote, J. H., & Townend, J. N. (2002). Cardiac vagal response to water ingestion in normal human subjects. Clinical Science103, 157-162.
  2. Brown, C. M., Barberini, L., Dulloo, A. G., & Montani, J. P. (2005). Cardiovascular responses to water drinking: does osmolality play a role?.American Journal of Physiology-Regulatory, Integrative and Comparative Physiology289(6), R1687-R1692.
  3. Chiang, C. T., Chiu, T. W., Jong, Y. S., Chen, G. Y., & Kuo, C. D. (2010). The effect of ice water ingestion on autonomic modulation in healthy subjects.Clinical Autonomic Research20(6), 375-380.
  4. Oliveira, T. P., Ferreira, R. B., Mattos, R. A., Silva, J. P., & Lima, J. R. P. (2011). Influence of water intake on post-exercise heart rate variability recovery.Journal of Exercise Physiology Online.

New Study: Ultra-Short HRV is Sensitive to Training Effects in Team Sports Players

Here’s a quick look at a recent study of ours in press with the Journal of Sports Science and Medicine. We’ve shown previously that lnRMSSD can be validly assessed in 60-s from an isolated measure in a variety of athletes, but in this paper we demonstrate that 60-s measures are capable of tracking lnRMSSD changes in elite athletes. The full text is open access on the JSSM site.

Abstract
The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period) to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1) from 0-5 min (i.e., stabilization period); 2) from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3) from 5-10 min (i.e., criterion period). The lnRMSSD was almost certainly higher (100/00/00) using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min) and lnRMSSDCriterion ranged between 0.45 – 0.75, with the highest value (p = 0.75; 90% CI: 0.55 – 0.85) found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure), and can be used to track cardiac autonomic adaptations.

ultra short HRV sensitive to training effects

Thanks to Dr. Fabio Nakamura and his research group out of Brazil for inviting me to collaborate with them on this one. We have several more in production looking at daily HRV changes in response to training  in different teams and how Wellness and Fitness markers influence HRV responses.

Interpreting HRV Trends in Athletes: High Isn’t Always Good and Low Isn’t Always Bad

This article was written for the FreelapUSA site. The intro is posted below. You can follow the link for the full article. Thanks to Christopher Glaeser from Freelap for inviting my contribution as I’ve found this site to be a great resource.

Interpreting HRV Trends in Athletes: High Isn’t Always Good and Low Isn’t Always Bad

Heart rate variability (HRV) monitoring has become increasingly popular in both competitive and recreational sports and training environments due to the development of smartphone apps and other affordable field tools. Though the concept of HRV is relatively simple, its interpretation can be quite complex. As a result, considerable confusion surrounds HRV data interpretation. I believe much of this confusion can be attributed to the overly simplistic guidelines that have been promoted for the casual-end, non-expert user.

In the context of monitoring fatigue or training status in athletes, a common belief is that high HRV is good and low HRV is bad. Or, in terms of observing the overall trend, increasing HRV trends are good, indicative of positive adaptation or increases in fitness while decreasing trends are bad, indicative of fatigue accumulation or “overtraining” and performance decrements. In this article I address the common notions of both acute and longitudinal trend interpretation, and discuss why and when these interpretations may or may not be appropriate. We will briefly explore where these common interpretations or “rules” have come from within the literature, and then discuss some exceptions to these rules.

Continue reading article on FreelapUSA

New study: Assessing shortened field-based HRV data acquisition in team-sport athletes

Our latest study “Assessing shortened field-based heart rate variability data acquisition in team-sport athletes” is now available ahead of print in IJSPP.

This project was a collaboration with Dr. Fabio Nakamura, Lucas Pereira, Dr. Irineu Loturco and Dr. Rodrigo Ramirez-Campillo. We have several more papers in production, in review and in press, so stay tuned for those.

This study expands on previous work of ours (link, link) that  assessed the agreement between ultra-short (60 s) HRV measures with standard 5 minute measures (following a 5 min stabilization period). This study differs from our previous work in a few key areas:

1. We assessed HRV (LnRMSSD) in the seated position here versus the supine position previously. Having to accommodate to the seated position may take longer than the supine position due to the vertical positioning and extra stress on the heart. Additionally, the seated position has been suggested in recent review papers to be the preferred position for athlete monitoring. Therefore, investigation into the time-course for HRV stabilization (i.e., how long must we wait to achieve a stable R-R signal), in addition to the agreement between ultra-short measures and the criterion (5 min post 5 min stabilization) segment from seated measures is required.

2. This study also evaluated the ratio between LnRMSSD and the R-R interval (LnRMSSD:R-R). Previous work has shown that highly fit athletes can demonstrate “parasympathetic saturation” which is characterized by a decrease in HRV despite very low resting heart rates. Daniel Plews et al. describe this phenomenon in their recent review paper: “The underlying mechanism is likely the saturation of acetylcholine receptors at the myocyte level: a heightened vagal tone may give rise to sustained parasympathetic control of the sinus node, which may eliminate respiratory heart modulation and reduce
HRV.”

3. In our previous studies we used an ECG for HRV analysis which is considered the gold standard, though not very practical for routine monitoring. In this study we used the Polar RS800,  a field tool heart rate monitor system that is more commonly used in practical settings.

4. Lastly, this study included elite level athletes whereas our previous work included collegiate athletes.

Our results show that the first 5 min LnRMSSD value (stabilization period) was not different than the criterion segment (mins 5-10). Additionally, we found that each isolated minute from the stabilization period (i.e., min 0-1, 1-2, 2-3, etc.) showed good agree with the criterion. Therefore, when 5 minute measures cannot be obtained due to time constraints or for compliance reasons, 60 s measures appear suitable for valid assessment, in agreement with our previous investigations.

In our next paper (in press) we assess if ultra-short LnRMSSD measures are sensitive to training effects in elite athletes.

Abstract
Purpose: The aims of this study was to compare the LnRMSSD and the LnRMSSD:RR values obtained during a 5-min stabilization period with the subsequent 5-min criterion period and to determine the time course for LnRMSSD and LnRMSSD:RR stabilization at 1-min analysis in elite team-sport athletes. Methods: Thirty-five elite futsal players (23.9 ± 4.5 years; 174.2 ± 4.0 cm; 74.0 ± 7.5 kg; 1576.2 ± 396.3 m in the YoYo test level 1), took part in this study. The RR interval recordings were obtained using a portable heart rate monitor continuously for 10-min in the seated position. The two dependent variables analyzed were the LnRMSSD and the LnRMSSD:RR. To calculate the magnitude of the differences between time periods, the effect size (ES) analysis was conducted. To assess the levels of agreement the intra-class correlation coefficient (ICC) and the Bland-Altman plots were used. Results: TheLnRMSSD and LnRMSSD:RR values obtained during the stabilization period (i.e., 0-5-min) presented very large to near perfect ICCs with the values obtained during the criterion period (i.e., 5-10-min), with trivial ES. In the ultra-short-term analysis (i.e., 1-min segments) the data showed slightly less accurate results, but only trivial to small differences with very large to near perfect ICCs were found. Conclusion: To conclude, LnRMSSD and LnRMSSD:RR can be recorded in 5-min without traditional stabilization periods under resting conditions in team-sport athletes. The ultra-short-term analysis (i.e., 1-min) also revealed acceptable levels of agreement with the criterion.